g Application §
S Programming (

e
%\\\\ Hend Alkittawi aamas
O

AN\







Q
INHERITANCE

\

~\

When creating a class rather than declaring completely new members
you can designate that the new class should inherit the members of
an existing class.

The existing class is called the superclass and the new class is
the subclass.

With inheritance the instance variables and methods that are the
same for all the classes in the hierarchy are declared in a
superclass.

In inheritance, a new class is created by acquiring an existing
class’'s members and possibly embellishing them with new or

modified capabilities.

\



public class Animal {
private String name;
public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public void eat() {

System.out.println(getName() +

eats food.");

public class Dog extends Animal { public class InheritanceDemo {

}

private String breed; public static void main(String[] args){

public String getBreed() {

return breed: Animal animal = new Animal();
} ! animal.eat();
public void setBreed(String breed) { Dog dog = new Dog();
this.breed = breed; // setName() is an inherited method
} dog.setName("Buddy");
public void bark() { .
System.out.println("The dog barks."); /] setBreed() is a method of Dog class
} dog.setBreed("Golden Retriever");

// eat() is an inherited method
dog.eat();

// bark() is a method of Dog class
dog.bark();



Q
INHERITANCE

\

The direct superclass is the superclass from which the subclass
explicitly inherits.

An indirect superclass is any class above the direct
superclass in the class hierarchy, which defines the
inheritance relationships among classes.

In Java, the class hierarchy begins with a class Object which
every class in Java directly or indirectly extends.

Java supports only single inheritance in which each class is

derived from exactly one direct superclass.




INHERITANCE

|
O
\
\
\

\

- Inheritance and constructors

Constructors are not inherited, a superclass’s constructors are
still available to be called by subclasses.

Java requires that the first task of any subclass constructor is to
call its direct superclass’s constructor to ensure that the
instance variables inherited from the superclass are initialized
properly.

Superclass constructor call syntax: keyword super followed by a
set of parentheses containing the super class constructor arguments
which are you used to initialize the super class instance

variables.




public class Animal { public class Dog extends Animal { public class InheritanceDemo {

private String name; private String breed; public static void main(String[] args){
public Animal(String name) { public Dog(String name, String breed) { . . _ X i s
this.name = name; super(name) ; An%mal animal = new Animal("Hazel");
} this.breed = breed; animal.eat();
}
public String getName() { Dog dog = new Dog("A Name", "A Breed");
return name; public String getBreed() {
} } return breed; // eat() is an inherited method
public void setName(String name) { dog.eat();
this.name = name; public void setBreed(String breed) {
} this.breed = breed; // bark() is a method of Dog class
} dog.bark();
public void eat() { }
System.out.println(getName() + public void bark() { }
" eats food."); System.out.println("The dog barks.");
} }

} }



Q
INHERITANCE

\

A subclass can add its own fields and methods; it is more specific than its
superclass.

A subclass exhibits the behavior of its superclass and can modify these
behaviors so that they operate appropriately for the subclass. A subclass can
customize methods that it inherits from its superclass to do this the
subclass overrides/redefines the superclass method with an appropriate
implementation.

To override a superclass method in a subclass, the subclass must declare a
method with the same signature as the superclass method.

When a subclass method overrides an inherited superclass method, the
superclass version of the method can be accessed from the subclass by
preceding the super-class method name with the keyword super and a DOT (.)

separator.

\
1




public class Animal { public class Dog extends Animal { public class InheritanceDemo {

private String name; private String breed; public static void main(String[] args){
public Animal(String name) { public Dog(String name, String breed) { . . _ A i s
this.name = name; super(name) ; An%mal animal = new Animal("Hazel");
} this.breed = breed; animal.eat();
}
public String getName() { Dog dog = new Dog("A Name", "A Breed");
return name; public String getBreed() { // eat() is an inherited method
} ) return breed; dog.eat():
public void setName(String name) {
this.name = name; public void setBreed(String breed) { /1 bark() is a method of Dog class
} this.breed = breed; dog.bark();
}
public void eat() { // toString() in Dog redefines the
System.out.println(getName() + public void bark() { // behavior of toString() in Animal
, eats food."); ) System.out.println("The dog barks."); String s = dog.toString():
}
@Override @Override }
public String toString() public String toString()
return "Name: " + getName(); return super.toString() + " Breed: "
} + getBreed();
} }



Q
PUBLIC, PRIVATE AND PROTECTED KEYWORDS"

\
\

- A class’'s public members are accessible wherever the program
has reference to an object of that class or one of its
subclasses.

- A class’'s private members are accessible only within the class
itself.

- Using protected access modifier offers an intermediate level
of access between public and private; a superclass’'s protected
members can be accessed by members of that superclass, by
members of its subclasses and by members of other classes in

the same package.

\



Q
PUBLIC, PRIVATE AND PROTECTED KEYWORDS"

\
\

~\

- Public members of the superclass become public members of the
subclass and protected members of the superclass become

protected members of the subclass.

- Methods of a subclass cannot directly access private members
of their superclass. Declaring private instance variables

helps you test, debug and correctly modify systems.




package inheritance;
public class Animal {

private String name;

public String aString;

public String publicString;
protected String protectedString;

public Animal(String name) {
this.name = name;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public void eat() {
System.out.println(getName() +
" eats food.");
}

@0verride

public String toString()
return "Name: " + getName();

}

private void animalMethod() {
// method body
}

}

package inheritance;
public class Dog extends Animal {

private String breed;

public Dog(String name, String breed) {
super(name);
this.breed = breed;

}

public String getBreed() {
return breed;
}

public void setBreed(String breed) {
this.breed = breed;
}

public void bark() {
System.out.println("The dog barks.");
}

private void testAccess() {
// String s@ = name; // invalid
String s1 = getName(); // indirect access

String s2 = publicString; // insecure
String s3 = protectedString; // valid
}
@0verride

public String toString()
return super.toString() + " Breed:
+ getBreed();

package inheritance;
public class InheritanceDemo {

public static void main(String[] args){

Animal animal = new Animal("Hazel");
animal.eat();

// animal.animalMethod(); // inavlid

// animal.bark(); // invalid

// animal.name = "some string"; // invalid
animal.publicString = "some string";
animal.protectedString = "some string";

Dog dog = new Dog("A Name", "A Breed");
// eat() is an inherited method
dog.eat();

// bark() is a method of Dog class
dog.bark();

// toString() in Dog redefines the
// behavior of toString() in Animal
String s = dog.toString();

// dog.name = "some string"; // invalid
dog.publicString = "some string";
dog.protectedString = "some string";



CODE DEMO

- Create classes to demo
inheritance concepts!

o —— -

- = = -



DO YOU HAVE ANY
QUESTIONS?

a hend.alkittawi@utsa.edu
By Appointment
a Online




