
CS 2124: DATA STRUCTURES
Spring 2024

6th Lecture

Topics: Advanced Linked Lists and Priority Queues

Midterm Exams

• Data Structure (Midterm Exam – In person) – Thursday, 29th Feb

• Exam will be on Canvas (You can bring your own system or you can use lab systems)

• Physical Attendance will be taken in Lab

• Location: NPB 1.226

• Lectures 1 to 6

• Timing:
Sections Time/ NPB 1.226 Students

CS 2124-0CA 36734 10:00 – 10:30 30

CS 2124-0CB 36736 10:40 – 11:10 29

CS 2124-0DA 36738 11:30 – 12:00 30

CS 2124-0DB 36739 12:10 – 12:40 30

CS 2124-0EA 42879 01:30 – 02:00 30

CS 2124-0EB 42880 02:10 – 02:40 30

Midterm Exams

• Points: 20

• Time will be marked (by canvas) when students access the Exam

• Number of MCQ: 18 (Each MCQ Points vary based on difficulty)

• Once the Quiz starts students will have 30 Min to complete it.

• The quiz cannot be paused or stopped. It must be attempted in one sitting

• Kindly do not refresh or go back to the previous question (press back on the browser) as that is not allowed.

• One question will be visible at one time.

• Once you answer the question (submit) it cannot be changed

❖ Students with SDS approval only need to attempt the first 9 questions that they receive on Canvas.

❖ After completion do email for grade scaling

Topics
• Circular LLL (Linear Linked List)

• Singly LinkedList (L.L) as Circular L.L

• Algorithm

• Implementation

• Operation - Insertion at Front

• Operation - Insertion at Last

• Operation - Delete First Element

• Operation – Searching

• Applications

• Dual LinkedList (DLL)

• Memory Representation and Operations on a DLL

• Insertion At Beginning Of DLL

• Insertion At End Of DLL

• Deletion At Beginning Of DLL

• Deletion After A Specified Node

• Circular DLL

• Implementation

• Priority Queues

• Priority Queues – Characteristics

• Priority Queues – Implementation

LinkedList (Dual LinkedList)

Doubly linked list is a complex type of linked list in which a node contains a pointer to the previous as well as the
next node in the sequence. Therefore, in a doubly linked list, a node consists of three parts: node data, pointer to
the next node in sequence (next pointer) , pointer to the previous node (previous pointer).

• struct node
• {
• struct node *prev;
• int data;
• struct node *next;
• }

The prev part of the first node
and the next part of the last node
will always contain null indicating
end in each direction.

• struct node
• {
• struct node *prev;
• int data;
• struct node *next;
• };
• struct node *head;

• struct DLLNode {
• int info;
• struct node *left, *right;
• };

Dual LinkedList (DLL)

Applications:
• It is used by web browsers for backward and forward navigation of web pages
• LRU (Least Recently Used) / MRU (Most Recently Used) Cache are constructed using Doubly Linked Lists.
• Used by various applications to maintain undo and redo functionalities.
• In Operating Systems, a doubly linked list is maintained by thread scheduler to keep track of processes that are

being executed at that time.

Memory Representation and Operations on a DLL

• Generally, doubly linked list consumes more space for every node and therefore, causes more expansive basic
operations such as insertion and deletion. But, can easily be manipulated (forward and backward).

Insertion At Beginning Adding the node into the linked list at beginning.

Insertion At End Adding the node into the linked list to the end.

Insertion After Specified Node Adding the node into the linked list after the specified node.

Deletion At Beginning Removing the node from beginning of the list

Deletion At The End Removing the node from end of the list.

Deletion Of The Node Having Given Data Removing the node which is present just after the node containing the given data.

Searching
Comparing each node data with the item to be searched and return the location of the item in the
list if the item found else return null.

Traversing
Visiting each node of the list at least once in order to perform some specific operation like searching,
sorting, display, etc.

Insertion At Beginning Of DLL

Head ptr
38-68-93-C4-FE-54

Data
1

N-Ptr
NULL

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54

Insertion At Beginning Of DLL

Head ptr
38-68-93-C4-FE-54

Data
1

N-Ptr
NULL

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54

Data
2

N-Ptr
NULL

P-Ptr
NULL

New Node Address: 70-66-55-BA-7D-4D

New Node

Insertion At Beginning Of DLL

Head ptr
38-68-93-C4-FE-54

Data
1

N-Ptr
NULL

P-Ptr
NULL

Data
2

N-Ptr
NULL

P-Ptr
NULL

New Node

Target is to move the new node in front of the existing node
1. Head pointer should point to node 2
2. Next Pointer of node 2 should point to node 1
3. Node 1 Previous pointer should point to node 2

Node 1 Node 2

Node Address: 38-68-93-C4-FE-54 New Node Address: 70-66-55-BA-7D-4D

Insertion At Beginning Of DLL

Head ptr
38-68-93-C4-FE-54

Data
1

N-Ptr
NULL

P-Ptr
NULL

Data
2

N-Ptr
NULL

P-Ptr
NULL

New Node

temp -> next = head

38-68-93-C4-FE-54

Target is to move the new node in front of the existing node
1. Head pointer should point to node 2
2. Next Pointer of node 2 should point to node 1
3. Node 1 Previous pointer should point to node 2

We are using temp pointer to exchange addresses

Node Address: 38-68-93-C4-FE-54 New Node Address: 70-66-55-BA-7D-4D

Insertion At Beginning Of DLL

Head ptr
38-68-93-C4-FE-54

Data
1

N-Ptr
NULL

P-Ptr
NULL

Data
2

N-Ptr
…FE-54

P-Ptr
NULL

New Node

temp -> next = head
head -> prev = temp

70-66-55-BA-7D-4D

Target is to move the new node in front of the existing node
1. Head pointer should point to node 2
2. Next Pointer of node 2 should point to node 1
3. Node 1 Previous pointer should point to node 2

Node Address: 38-68-93-C4-FE-54 New Node Address: 70-66-55-BA-7D-4D

(i.e. 70-66-55-BA-7D-4D)

Insertion At Beginning Of DLL

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
…7D-4D

Data
2

N-Ptr
...FE-54

P-Ptr
NULL

New Node

1. temp -> next = head
2. head -> prev = temp
3. head = temp

Target is to move the new node in front of the existing node
1. Head pointer should point to node 2
2. Next Pointer of node 2 should point to node 1
3. Node 1 Previous pointer should point to node 2

Node Address: 38-68-93-C4-FE-54 New Node Address: 70-66-55-BA-7D-4D

Insertion At Beginning Of DLL

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

1. temp -> next = head
2. head -> prev = temp
3. Head = temp

Target is to move the new node in front of the existing node
1. Head pointer should point to node 2
2. Next Pointer of node 2 should point to node 1
3. Node 1 Previous pointer should point to node 2

Node Address: 38-68-93-C4-FE-54New Node Address: 70-66-55-BA-7D-4D

Insertion At Beginning Of DLL

• Step 1: IF ptr = NULL

• Write OVERFLOW
Go to Step 9
[END OF IF]

• Step 2: SET NEW_NODE = ptr

• Step 3: SET ptr = ptr -> NEXT

• Step 4: SET NEW_NODE -> DATA = VAL

• Step 5: SET NEW_NODE -> PREV = NULL

• Step 6: SET NEW_NODE -> NEXT = START

• Step 7: SET head -> PREV = NEW_NODE

• Step 8: SET head = NEW_NODE

• Step 9: EXIT

Implementation at the end of lecture

Insertion At End Of DLL

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
NULL

Node Address: 45-55-96-A2-FF-5A

New Node

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
NULL

Node Address: 45-55-96-A2-FF-5A

New Node

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D

1. Traverse to the end of the Linked List

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
NULL

Node Address: 45-55-96-A2-FF-5A

New Node

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D

1. Traverse to the end of the Linked List

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
NULL

Node Address: 45-55-96-A2-FF-5A

New Node

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D

1. Traverse to the end of the Linked List

While (T -> next != NULL)
T = T -> next

We pass the Head address to start traversing

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
NULL

Node Address: 45-55-96-A2-FF-5A

New Node

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D While (T -> next != NULL)
T = T -> next

We pass the Head address to start traversing

1. Traverse to the end of the Linked List
2. Attach new node to the list

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
NULL

Node Address: 45-55-96-A2-FF-5A

New Node

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
NULL

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D While (T -> next != NULL)
T = T -> next

We pass the Head address to start traversing

1. Traverse to the end of the Linked List
2. Attach new node to the list

T -> next = temp (We need to update N-ptr of node 2 to point to new node)

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
NULL

Node Address: 45-55-96-A2-FF-5A

New Node

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
..FF-5A

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D

We pass the Head address to start traversing

1. Traverse to the end of the Linked List
2. Attach new node to the list

T -> next = temp (We need to update N-ptr of node 2 to point to new node)

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
..FE-54

Node Address: 45-55-96-A2-FF-5A

New Node

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
..FF-5A

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D

1. Traverse to the end of the Linked List
2. Attach new node to the list

T -> next = temp (We need to update N-ptr of node 2 to point to new node)
temp -> prev = T (We update the new node prev-pointer to node 2)

temp -> prev

Insertion At End Of DLL

Data
2

N-Ptr
NULL

P-Ptr
..FE-54

Node Address: 45-55-96-A2-FF-5A

Head ptr
70-66-55-BA-7D-4D

Data
1

N-Ptr
..FF-5A

P-Ptr
..7D-4D

Data
2

N-Ptr
..FE-54

P-Ptr
NULL

Node Address: 38-68-93-C4-FE-54Node Address: 70-66-55-BA-7D-4D

1. Traverse to the end of the Linked List
2. Attach new node to the list

T -> next = temp (We need to update N-ptr of node 2 to point to new node)
temp -> prev = T (We update the new node prev-pointer to node 2)

Deletion At Beginning Of DLL

• Step 1: If Head = Null

• Write Underflow

• Goto Step 6

• Step 6: Exit

Deletion At Beginning Of DLL

• Step 1: If Head = Null

• Write Underflow

• Goto Step 6

• Step 2: Set Ptr = Head

• Step 6: Exit

Deletion At Beginning Of DLL

• Step 1: If Head = Null

• Write Underflow

• Goto Step 6

• Step 2: Set Ptr = Head

• Step 3: Set Head = Head → Next

• Step 6: Exit

Deletion At Beginning Of DLL

• Step 1: If Head = Null

• Write Underflow

• Goto Step 6

• Step 2: Set Ptr = Head

• Step 3: Set Head = Head → Next

• Step 4: Set Head → Prev = Null

• Step 6: Exit

Deletion At Beginning Of DLL

• Step 1: If Head = Null

• Write Underflow

• Goto Step 6

• Step 2: Set Ptr = Head

• Step 3: Set Head = Head → Next

• Step 4: Set Head → Prev = Null

• Step 5: Free Ptr

• Step 6: Exit

Deletion In DLL After The Specified Node
(Searching Node based on data)

• Step 1: IF HEAD = NULL

Write UNDERFLOW
Go to Step 9
[END OF IF]

• Step 2: SET TEMP = HEAD

• Step 3: Repeat Step 4 while TEMP -> DATA != ITEM

• Step 4: SET TEMP = TEMP -> NEXT

[END OF LOOP]

• Step 5: SET PTR = TEMP -> NEXT

• Step 6: SET TEMP -> NEXT = PTR -> NEXT

• Step 7: SET PTR -> NEXT -> PREV = TEMP

• Step 8: FREE PTR

• Step 9: EXIT

Dual LinkedList
(Node creation & Insertion in front) – Part 1/5

Dual LinkedList
(Insert node at specific location) – Part 2/5

Dual LinkedList
(Insertion node at the end) – Part 3/5

Dual LinkedList
(Delete a node) – Part 4/5

Dual LinkedList
(Display LinkedList & Main function) – Part 5/5

What will be the output sequence ?

Double Linear LinkedList (Circular)

Additional Source: Link

https://www.javatpoint.com/circular-doubly-linked-list

Node structure

Pointers

Pointers
Assignment

Double Linear LinkedList (Circular)

Will this Program work ?

Double Linear LinkedList (Circular)

Lines: 22 & 25

Double Linear LinkedList (Circular)
1. Will this work (line 41 i.e. use a variable to store the length of DLL)?
2. Will it display only 2 nodes or 3 nodes ?

Double Linear LinkedList (Circular)

1. Will this work (line 41 to 46)?
2. Will it display only 2 nodes or 3 nodes ?

Double Linear LinkedList (Circular)

1. Will this work as on line 46 have a different Condition?
2. Will it display only 2 nodes or 3 nodes ?

Errors in Software
(Why we need to be careful about errors/warnings/defects)

• It is difficult to find accurate numbers for errors per KLOC (1000 lines of code) since companies generally don’t
discuss things that could reflect negatively on them

• The book Code Complete published by Steve McDonnell in 2004 provides a range of answers on this topic:

a) Industry Average: "about 15 - 50 errors per 1000 lines of delivered code." He further says this is usually
representative of code that has some level of structured programming behind it, but probably includes a mix
of coding techniques

b) Microsoft Applications: "about 10 - 20 defects per 1000 lines of code during in-house testing, and 0.5 defect
per KLOC in released product (Moore 1992)." He attributes this to a combination of code-reading techniques
and independent testing (discussed further in another chapter of his book).

• "Harlan Mills pioneered 'cleanroom development', a technique that has been able to achieve rates as low as 3
defects per 1000 lines of code during in-house testing and 0.1 defect per 1000 lines of code in released product
(Cobb and Mills 1990). A few projects - for example, the space-shuttle software - have achieved a level of 0 defects
in 500,000 lines of code using a system of format development methods, peer reviews, and statistical testing."

• Book reference: Steve McDonnell, Code Complete, 2nd Edition. Redmond, Wa.: Microsoft Press, 2004.

Priority Queues

• A priority queue is an abstract data type that behaves similarly to the normal queue except
that each element has some priority,

• i.e., the element with the highest priority would come first in a priority queue.

• The priority of the elements in a priority queue will determine the order in which elements are
removed from the priority queue.

• The priority queue supports only comparable elements, which means that the elements are
either arranged in an ascending or descending order.

Priority Queues (Characteristics)

• Every element in a priority queue has some priority associated with it.

• An element with the higher priority will be deleted before the deletion of the lesser priority.

• If two elements in a priority queue have the same priority, they will be arranged using the
FIFO principle (General rule).

• Priority Queues can be implemented using

1. LinkedList

2. Binary Heap

3. Binary Search Tree

Function on Lines
4 to 6

Priority
Queues

Priority Queues (Another approach)

• Stack based priority queue
• Maybe Sort or create array based on priority. But do be careful about de-queue operation

