CS 3333: Mathematical Foundations
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» A~lis unique.
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a b

> =
Let A <c d
» That is, ad — bc # 0.

» Then we can compute A~ in the following way:
d —b d —b
> A" 1= 1 ( ) — (adcbc adabc)
A\ —c a ad—bc ad—bc
» One can verify that A- A~ = k.

» It is more complicated to compute the inverse of larger square
matrix.

> be a 2 x 2 matrix such that |A| # 0.
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» We can calculate the inverse of a n X n square matrix A via
the Gauss-Jordan elimination method.

> We begin by writing I, to the right of A:

ail1  adi2 din | 1 0 --- 0

a1 axy - asn | o1 -.-- 0
» .

anl am - ann | o o0 --- 1

> We call this matrix an augmented matrix.

» We then use elementary row operations to reduce the left
half of the augmented matrix to the identity matrix. The right
half of the resulting augmented matrix is A=
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» We end by writing /, to the left and A~! to the right:

! ! !

10 - 0 | ay app - a,
! / !

»O Lo 0 | &y ap - a,
! ! /

00 - 1 | dpr Ay ann

> Why it works?
> (All) = (AATHIATY) = (I A7)
» How to transform (A|/,) to (I,|/A1)?
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» We may be interested in modifying a matrix by an
Elementary Row Operation.
» Consider the system of three equations in three unknowns
> X1+ X3 = 1
> 2X1 + Xo = 3
> x5 +2x3=1
» It can be written in matrix form as Ax = b where

1 01 X1 1
> A=12 1 0| x=[x]| b=|{3
01 2 X3 1

» Replace the second equation by the sum of second equation
and -2*first equation. We get
1 0 1 X1 3
> A=10 1 2| x=(x]b=11
01 2 X3 1
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» We have the following Elementary Row Operations in
modifying a matrix.

1. Row switching

2. Row multiplication by a constant

3. Replace a row by a sum of that row and a multiple of another
row.
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» Any non-singular matrix can be reduced to an identity matrix
using these elementary row operations.

> We can define elementary column operations similarly.
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» We can use the inverse of a matrix to solve a system of linear
equations (Ax = b).
> X1 + 2X2 + X3 = 4
> 3x; —4xp +2x3 =2
» 5x1 4+ 3x +5x3 = —1

1 2 1 X1 4
> (3 —4 2] [x]=]2
5 3 5 X3 -1

» If Ais non-singular, then A~! exists.

> A lAx=A"1h = Ix=A"1b = x=A"1b

» Therefore, if we compute A~1, we can solve the system of
linear equations by computing A~1b.
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