Generalized PIE Principle

Suppose that in a discrete math class, every student is a math or CS major. Suppose that 25 are CS majors 13 are math majors (with 8 students double majoring in math and CS). How many students are in the class?

 $A = \text{set of all (S majors} \\ B = \text{set of all Mark majors} \\ |A \cup B| = |A| + |B| - |A \cap B| \\ = 25 + 13 - 8 = 30$

$$P_1 = Students$$
 who are CS majors. $N(P_1) = \# of students who
 $P_2 = Students$ who are Mark majors. $N(P_2) = \# of majors$$

$$N(P,P_2) = \# of student satisfyingP, $\# P_2$$$

Total # of studens = $N(P_1) + N(P_2) - N(P_1P_2)$.

Suppose a school offers Spanish, French, and Russian as foreign language classes.

 $P_1 = Skudenty Juking Spanish$ $P_2 = \frac{11}{11} \frac{11}{11}$ Franch $P_3 = \frac{11}{11} \frac{11}{11}$ Russian

 $N(P_{1}) = 1232 , N(P_{2}) = 877 , N(P_{3}) = 114$ $N(P_{1}P_{2}) = 103 , N(P_{1}P_{3}) = 23 , N(P_{2},P_{3}) = 14$ $N(P_{1}P_{2}P_{3}) = 7$

 $\frac{1}{10 \text{ hol}} = N(l_1) + N(l_2) + N(l_2) - N(l_1 l_2) - N(l_1 l_3) - N(l_2 l_3) + N(l_1 l_2 l_3) + N(l_1 l_3 l_3) + N(l_1 l_3) + N(l_1 l_3) + N(l_1 l_3) + N(l_1 l_3) + N(l$

= 1232 + 879 + 114 - 103 - 23 - 14 + 7= 2092

Generalized Principle of Inclusion and Exclusion (PIE):

Example from Section 8.6 page 586: What is the number of primes between 2 and 100?

99 botal numbers. We can can't the number of composites
and subtract this from 99
If a number is composite, there is a prime number that
divides it.
Possible prime divisors are all primes between 1 and (100)
2, 3, 5, 7

$$P_2 = #$$
 divisible by 2, $P_3 = #$ divisible by 3
 $P_c = # ii :: 5, P_7 = ii : 7$
Total # of primes: 99 - $P_2 \cup P_3 \cup P_5 \cup P_7 + 4$
 $N(P_1) = \lfloor \frac{100}{2} \rfloor = 50$ $N(P_3) = \lfloor \frac{100}{5} \rfloor = 33$
 $N(P_5) = \lfloor \frac{100}{5} \rfloor = 10$ $N(P_3) = \lfloor \frac{100}{5} \rfloor = 14$
 $N(P_3P_3) = \lfloor \frac{100}{5} \rfloor = 10$ $N(P_3P_3) = \lfloor \frac{100}{5} \rfloor = 10$
 $N(P_3P_3) = \lfloor \frac{100}{5} \rfloor = 7$ $N(P_3P_3) = \lfloor \frac{100}{5} \rfloor = 10$
 $N(P_3P_3) = \lfloor \frac{100}{5} \rfloor = 7$ $N(P_3P_3) = \lfloor \frac{100}{5} \rfloor = 2$
 $N(P_3P_3) = \lfloor \frac{100}{50} \rfloor = 7$ $N(P_3P_3) = \lfloor \frac{100}{50} \rfloor = 2$
 $N(P_3P_3) = \lfloor \frac{100}{50} \rfloor = 1$ $N(P_3P_3P_3) = \lfloor \frac{100}{50} \rfloor = 2$
 $N(P_3P_3) = \lfloor \frac{100}{50} \rfloor = 1$ $N(P_3P_3P_3) = \lfloor \frac{100}{50} \rfloor = 2$
 $N(P_3P_3) = \lfloor \frac{100}{50} \rfloor = 1$ $N(P_3P_3P_3) = \lfloor \frac{100}{50} \rfloor = 2$

N

N

Example 1, Section 8.6: Compute the number of solutions to $x_1 + x_2 + x_3 = 11$, where $0 \le x_1 \le 3, 0 \le x_2 \le 4$, and $0 \le x_3 \le 6$ where each x_i is an integer.

Check the solution on page 586 in the textbook