
CS 3333: Mathematical Foundations

Modular Arithmetic



Modular Arithmetic

I Often times in computing, we are more concerned with what
the remainder of an integer is when it is divided by some other
integer than we are in the actual integer itself.

I For example, we might be interested in what time it will be 80
hours from now.

I We solve this by evaluating 14 + 80 mod 24 (14 is the
current time, 80 is the amount of hours we are adding on, and
24 is the number of hours in a day).



Modular Arithmetic

I Often times in computing, we are more concerned with what
the remainder of an integer is when it is divided by some other
integer than we are in the actual integer itself.

I For example, we might be interested in what time it will be 80
hours from now.

I We solve this by evaluating 14 + 80 mod 24 (14 is the
current time, 80 is the amount of hours we are adding on, and
24 is the number of hours in a day).



Modular Arithmetic

I Often times in computing, we are more concerned with what
the remainder of an integer is when it is divided by some other
integer than we are in the actual integer itself.

I For example, we might be interested in what time it will be 80
hours from now.

I We solve this by evaluating 14 + 80 mod 24 (14 is the
current time, 80 is the amount of hours we are adding on, and
24 is the number of hours in a day).



Modular Arithmetic

I Definition: Let a and b be integers and m be a positive
integer. a is congruent to b modulo m if m | (a− b).

I Notation:
I a ≡ b (mod m) if a is congruent to b modulo m.
I a 6≡ b (mod m) if a is not congruent to b modulo m.

I Examples:
I Is 2 ≡ 5 (mod 3)? Does 3 | (2− 5)? Yes.
I Is 17 ≡ 7 (mod 5)? Does 5 | (17− 7)? Yes.



Modular Arithmetic

I Definition: Let a and b be integers and m be a positive
integer. a is congruent to b modulo m if m | (a− b).

I Notation:
I a ≡ b (mod m) if a is congruent to b modulo m.
I a 6≡ b (mod m) if a is not congruent to b modulo m.

I Examples:
I Is 2 ≡ 5 (mod 3)? Does 3 | (2− 5)? Yes.
I Is 17 ≡ 7 (mod 5)? Does 5 | (17− 7)? Yes.



Modular Arithmetic

I Definition: Let a and b be integers and m be a positive
integer. a is congruent to b modulo m if m | (a− b).

I Notation:
I a ≡ b (mod m) if a is congruent to b modulo m.
I a 6≡ b (mod m) if a is not congruent to b modulo m.

I Examples:
I Is 2 ≡ 5 (mod 3)?

Does 3 | (2− 5)? Yes.
I Is 17 ≡ 7 (mod 5)? Does 5 | (17− 7)? Yes.



Modular Arithmetic

I Definition: Let a and b be integers and m be a positive
integer. a is congruent to b modulo m if m | (a− b).

I Notation:
I a ≡ b (mod m) if a is congruent to b modulo m.
I a 6≡ b (mod m) if a is not congruent to b modulo m.

I Examples:
I Is 2 ≡ 5 (mod 3)? Does 3 | (2− 5)?

Yes.
I Is 17 ≡ 7 (mod 5)? Does 5 | (17− 7)? Yes.



Modular Arithmetic

I Definition: Let a and b be integers and m be a positive
integer. a is congruent to b modulo m if m | (a− b).

I Notation:
I a ≡ b (mod m) if a is congruent to b modulo m.
I a 6≡ b (mod m) if a is not congruent to b modulo m.

I Examples:
I Is 2 ≡ 5 (mod 3)? Does 3 | (2− 5)? Yes.

I Is 17 ≡ 7 (mod 5)? Does 5 | (17− 7)? Yes.



Modular Arithmetic

I Definition: Let a and b be integers and m be a positive
integer. a is congruent to b modulo m if m | (a− b).

I Notation:
I a ≡ b (mod m) if a is congruent to b modulo m.
I a 6≡ b (mod m) if a is not congruent to b modulo m.

I Examples:
I Is 2 ≡ 5 (mod 3)? Does 3 | (2− 5)? Yes.
I Is 17 ≡ 7 (mod 5)?

Does 5 | (17− 7)? Yes.



Modular Arithmetic

I Definition: Let a and b be integers and m be a positive
integer. a is congruent to b modulo m if m | (a− b).

I Notation:
I a ≡ b (mod m) if a is congruent to b modulo m.
I a 6≡ b (mod m) if a is not congruent to b modulo m.

I Examples:
I Is 2 ≡ 5 (mod 3)? Does 3 | (2− 5)? Yes.
I Is 17 ≡ 7 (mod 5)? Does 5 | (17− 7)?

Yes.



Modular Arithmetic

I Definition: Let a and b be integers and m be a positive
integer. a is congruent to b modulo m if m | (a− b).

I Notation:
I a ≡ b (mod m) if a is congruent to b modulo m.
I a 6≡ b (mod m) if a is not congruent to b modulo m.

I Examples:
I Is 2 ≡ 5 (mod 3)? Does 3 | (2− 5)? Yes.
I Is 17 ≡ 7 (mod 5)? Does 5 | (17− 7)? Yes.



Modular Arithmetic

I Theorem 4: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if a = b + km for some
integer k.

I Note that when the claim is “if and only if” that one must
prove the theorem in “both directions”.

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ 6 = 30 + k(24) for some int k

(k = −1).
I 6 = 30 +−1 · 24 =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 4: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if a = b + km for some
integer k.

I Note that when the claim is “if and only if” that one must
prove the theorem in “both directions”.

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ 6 = 30 + k(24) for some int k

(k = −1).
I 6 = 30 +−1 · 24 =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 4: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if a = b + km for some
integer k.

I Note that when the claim is “if and only if” that one must
prove the theorem in “both directions”.

I Example: Let a = 6, b = 30, and m = 24:

I 6 ≡ 30 (mod 24) =⇒ 6 = 30 + k(24) for some int k
(k = −1).

I 6 = 30 +−1 · 24 =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 4: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if a = b + km for some
integer k.

I Note that when the claim is “if and only if” that one must
prove the theorem in “both directions”.

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24)

=⇒ 6 = 30 + k(24) for some int k
(k = −1).

I 6 = 30 +−1 · 24 =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 4: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if a = b + km for some
integer k.

I Note that when the claim is “if and only if” that one must
prove the theorem in “both directions”.

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ 6 = 30 + k(24) for some int k

(k = −1).

I 6 = 30 +−1 · 24 =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 4: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if a = b + km for some
integer k.

I Note that when the claim is “if and only if” that one must
prove the theorem in “both directions”.

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ 6 = 30 + k(24) for some int k

(k = −1).
I 6 = 30 +−1 · 24

=⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 4: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if a = b + km for some
integer k.

I Note that when the claim is “if and only if” that one must
prove the theorem in “both directions”.

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ 6 = 30 + k(24) for some int k

(k = −1).
I 6 = 30 +−1 · 24 =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 3: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if (a mod m) = (b
mod m).

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ (6 mod 24) = (30 mod 24) (both are

6).
I (6 mod 24) = (30 mod 24) =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 3: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if (a mod m) = (b
mod m).

I Example: Let a = 6, b = 30, and m = 24:

I 6 ≡ 30 (mod 24) =⇒ (6 mod 24) = (30 mod 24) (both are
6).

I (6 mod 24) = (30 mod 24) =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 3: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if (a mod m) = (b
mod m).

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24)

=⇒ (6 mod 24) = (30 mod 24) (both are
6).

I (6 mod 24) = (30 mod 24) =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 3: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if (a mod m) = (b
mod m).

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ (6 mod 24) = (30 mod 24) (both are

6).

I (6 mod 24) = (30 mod 24) =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 3: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if (a mod m) = (b
mod m).

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ (6 mod 24) = (30 mod 24) (both are

6).
I (6 mod 24) = (30 mod 24)

=⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Theorem 3: Let a and b be integers and m be a positive
integer. a ≡ b (mod m) if and only if (a mod m) = (b
mod m).

I Example: Let a = 6, b = 30, and m = 24:
I 6 ≡ 30 (mod 24) =⇒ (6 mod 24) = (30 mod 24) (both are

6).
I (6 mod 24) = (30 mod 24) =⇒ 6 ≡ 30 (mod 24).



Modular Arithmetic

I Problem 26: List 5 integers that are congruent to 4 modulo
12.

I 4, 16, 28, 40, 52

I 4 + k · 12
I In general, to find integers that are congruent to a modulo m:

I a + k ·m for any integer k.



Modular Arithmetic

I Problem 26: List 5 integers that are congruent to 4 modulo
12.

I 4

, 16, 28, 40, 52

I 4 + k · 12
I In general, to find integers that are congruent to a modulo m:

I a + k ·m for any integer k.



Modular Arithmetic

I Problem 26: List 5 integers that are congruent to 4 modulo
12.

I 4, 16

, 28, 40, 52

I 4 + k · 12
I In general, to find integers that are congruent to a modulo m:

I a + k ·m for any integer k.



Modular Arithmetic

I Problem 26: List 5 integers that are congruent to 4 modulo
12.

I 4, 16, 28

, 40, 52

I 4 + k · 12
I In general, to find integers that are congruent to a modulo m:

I a + k ·m for any integer k.



Modular Arithmetic

I Problem 26: List 5 integers that are congruent to 4 modulo
12.

I 4, 16, 28, 40

, 52

I 4 + k · 12
I In general, to find integers that are congruent to a modulo m:

I a + k ·m for any integer k.



Modular Arithmetic

I Problem 26: List 5 integers that are congruent to 4 modulo
12.

I 4, 16, 28, 40, 52

I 4 + k · 12
I In general, to find integers that are congruent to a modulo m:

I a + k ·m for any integer k.



Modular Arithmetic

I Problem 26: List 5 integers that are congruent to 4 modulo
12.

I 4, 16, 28, 40, 52

I 4 + k · 12

I In general, to find integers that are congruent to a modulo m:
I a + k ·m for any integer k.



Modular Arithmetic

I Problem 26: List 5 integers that are congruent to 4 modulo
12.

I 4, 16, 28, 40, 52

I 4 + k · 12
I In general, to find integers that are congruent to a modulo m:

I a + k ·m for any integer k .



Modular Arithmetic

I Theorem 5: Let a, b, c , d be integers and m be a positive
integer. If a ≡ b (mod m) and c ≡ d (mod m), then

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)



Modular Arithmetic

I For any positive integer m, let Zm = {0, 1, 2, . . . ,m − 1}.

I Note that for any integer a, (a mod m) ∈ Zm.

I +m: a +m b = (a + b) mod m

I ·m: a ·m b = a · b mod m
I Examples (a = 7, b = 9,m = 11):

I 7 +11 9 = 16 mod 11 = 5.
I 7 ·11 9 = 63 mod 11 = 8.



Modular Arithmetic

I For any positive integer m, let Zm = {0, 1, 2, . . . ,m − 1}.
I Note that for any integer a, (a mod m) ∈ Zm.

I +m: a +m b = (a + b) mod m

I ·m: a ·m b = a · b mod m
I Examples (a = 7, b = 9,m = 11):

I 7 +11 9 = 16 mod 11 = 5.
I 7 ·11 9 = 63 mod 11 = 8.



Modular Arithmetic

I For any positive integer m, let Zm = {0, 1, 2, . . . ,m − 1}.
I Note that for any integer a, (a mod m) ∈ Zm.

I +m: a +m b = (a + b) mod m

I ·m: a ·m b = a · b mod m
I Examples (a = 7, b = 9,m = 11):

I 7 +11 9 = 16 mod 11 = 5.
I 7 ·11 9 = 63 mod 11 = 8.



Modular Arithmetic

I For any positive integer m, let Zm = {0, 1, 2, . . . ,m − 1}.
I Note that for any integer a, (a mod m) ∈ Zm.

I +m: a +m b = (a + b) mod m

I ·m: a ·m b = a · b mod m

I Examples (a = 7, b = 9,m = 11):
I 7 +11 9 = 16 mod 11 = 5.
I 7 ·11 9 = 63 mod 11 = 8.



Modular Arithmetic

I For any positive integer m, let Zm = {0, 1, 2, . . . ,m − 1}.
I Note that for any integer a, (a mod m) ∈ Zm.

I +m: a +m b = (a + b) mod m

I ·m: a ·m b = a · b mod m
I Examples (a = 7, b = 9,m = 11):

I 7 +11 9 = 16 mod 11 = 5.
I 7 ·11 9 = 63 mod 11 = 8.



Modular Arithmetic

I For any positive integer m, let Zm = {0, 1, 2, . . . ,m − 1}.
I Note that for any integer a, (a mod m) ∈ Zm.

I +m: a +m b = (a + b) mod m

I ·m: a ·m b = a · b mod m
I Examples (a = 7, b = 9,m = 11):

I 7 +11 9 = 16 mod 11 = 5.

I 7 ·11 9 = 63 mod 11 = 8.



Modular Arithmetic

I For any positive integer m, let Zm = {0, 1, 2, . . . ,m − 1}.
I Note that for any integer a, (a mod m) ∈ Zm.

I +m: a +m b = (a + b) mod m

I ·m: a ·m b = a · b mod m
I Examples (a = 7, b = 9,m = 11):

I 7 +11 9 = 16 mod 11 = 5.
I 7 ·11 9 = 63 mod 11 = 8.



Modular Arithmetic

I The +m and ·m operators satisfy several properties:

I Closure: If a, b ∈ Zm, a +m b ∈ Zm and a ·m b ∈ Zm.
I Associativity: If a, b, c ∈ Zm then

I a +m b +m c = (a +m b) +m c = a +m (b +m c)
I a ·m b ·m c = (a ·m b) ·m c = a ·m (b ·m c)



Modular Arithmetic

I The +m and ·m operators satisfy several properties:

I Closure: If a, b ∈ Zm, a +m b ∈ Zm and a ·m b ∈ Zm.

I Associativity: If a, b, c ∈ Zm then
I a +m b +m c = (a +m b) +m c = a +m (b +m c)
I a ·m b ·m c = (a ·m b) ·m c = a ·m (b ·m c)



Modular Arithmetic

I The +m and ·m operators satisfy several properties:

I Closure: If a, b ∈ Zm, a +m b ∈ Zm and a ·m b ∈ Zm.
I Associativity: If a, b, c ∈ Zm then

I a +m b +m c = (a +m b) +m c = a +m (b +m c)
I a ·m b ·m c = (a ·m b) ·m c = a ·m (b ·m c)



Modular Arithmetic

I The +m and ·m operators satisfy several properties:

I Closure: If a, b ∈ Zm, a +m b ∈ Zm and a ·m b ∈ Zm.
I Associativity: If a, b, c ∈ Zm then

I a +m b +m c

= (a +m b) +m c = a +m (b +m c)
I a ·m b ·m c = (a ·m b) ·m c = a ·m (b ·m c)



Modular Arithmetic

I The +m and ·m operators satisfy several properties:

I Closure: If a, b ∈ Zm, a +m b ∈ Zm and a ·m b ∈ Zm.
I Associativity: If a, b, c ∈ Zm then

I a +m b +m c = (a +m b) +m c

= a +m (b +m c)
I a ·m b ·m c = (a ·m b) ·m c = a ·m (b ·m c)



Modular Arithmetic

I The +m and ·m operators satisfy several properties:

I Closure: If a, b ∈ Zm, a +m b ∈ Zm and a ·m b ∈ Zm.
I Associativity: If a, b, c ∈ Zm then

I a +m b +m c = (a +m b) +m c = a +m (b +m c)
I a ·m b ·m c

= (a ·m b) ·m c = a ·m (b ·m c)



Modular Arithmetic

I The +m and ·m operators satisfy several properties:

I Closure: If a, b ∈ Zm, a +m b ∈ Zm and a ·m b ∈ Zm.
I Associativity: If a, b, c ∈ Zm then

I a +m b +m c = (a +m b) +m c = a +m (b +m c)
I a ·m b ·m c = (a ·m b) ·m c

= a ·m (b ·m c)



Modular Arithmetic

I The +m and ·m operators satisfy several properties:

I Closure: If a, b ∈ Zm, a +m b ∈ Zm and a ·m b ∈ Zm.
I Associativity: If a, b, c ∈ Zm then

I a +m b +m c = (a +m b) +m c = a +m (b +m c)
I a ·m b ·m c = (a ·m b) ·m c = a ·m (b ·m c)



Modular Arithmetic

I Commutativity: If a, b ∈ Zm then
I a +m b = b +m a
I a ·m b = b ·m a

I Distributivity: If a, b, c ∈ Zm then
I (a +m b) ·m c = (a ·m c) +m (b ·m c).



Modular Arithmetic

I Commutativity: If a, b ∈ Zm then
I a +m b = b +m a
I a ·m b = b ·m a

I Distributivity: If a, b, c ∈ Zm then
I (a +m b) ·m c = (a ·m c) +m (b ·m c).



Modular Arithmetic

I Identity Elements:
I a +m 0 = a mod m
I a ·m 1 = a mod m

I Additive Inverse:
I If a ∈ Zm then there exists a b ∈ Zm such that a +m b = 0.
I Example: if m = 11 and a = 7 then b = 4 ((7 + 4)

mod 11 = 0).



Modular Arithmetic

I Identity Elements:
I a +m 0 = a mod m
I a ·m 1 = a mod m

I Additive Inverse:
I If a ∈ Zm then there exists a b ∈ Zm such that a +m b = 0.

I Example: if m = 11 and a = 7 then b = 4 ((7 + 4)
mod 11 = 0).



Modular Arithmetic

I Identity Elements:
I a +m 0 = a mod m
I a ·m 1 = a mod m

I Additive Inverse:
I If a ∈ Zm then there exists a b ∈ Zm such that a +m b = 0.
I Example: if m = 11 and a = 7 then b = 4 ((7 + 4)

mod 11 = 0).



Modular Arithmetic

I Applications of Congruences (Section 4.5 in [KR]):
I Hash Functions
I Pseudorandom Numbers
I Encryption/Decryption



Modular Arithmetic

I Hash Functions

I Problem: We want to store information based off of some
key/ID into memory, and we would like a quick way of storing
and retrieving information. We could create an array whose
size is the total number of possible keys, but this could require
too much memory.

I Example: Suppose we want to store information about 100
UTSA students using their banner id as a key.

I Solution: Create an array of size 100, and compute the
location in the array to store the information by taking the
banner id modulo 100.

I For a student with banner id 00687581, we would store
information in location 00687581 mod 100 = 81.



Modular Arithmetic

I Hash Functions
I Problem: We want to store information based off of some

key/ID into memory, and we would like a quick way of storing
and retrieving information. We could create an array whose
size is the total number of possible keys, but this could require
too much memory.

I Example: Suppose we want to store information about 100
UTSA students using their banner id as a key.

I Solution: Create an array of size 100, and compute the
location in the array to store the information by taking the
banner id modulo 100.

I For a student with banner id 00687581, we would store
information in location 00687581 mod 100 = 81.



Modular Arithmetic

I Hash Functions
I Problem: We want to store information based off of some

key/ID into memory, and we would like a quick way of storing
and retrieving information. We could create an array whose
size is the total number of possible keys, but this could require
too much memory.

I Example: Suppose we want to store information about 100
UTSA students using their banner id as a key.

I Solution: Create an array of size 100, and compute the
location in the array to store the information by taking the
banner id modulo 100.

I For a student with banner id 00687581, we would store
information in location 00687581 mod 100 = 81.



Modular Arithmetic

I Hash Functions
I Problem: We want to store information based off of some

key/ID into memory, and we would like a quick way of storing
and retrieving information. We could create an array whose
size is the total number of possible keys, but this could require
too much memory.

I Example: Suppose we want to store information about 100
UTSA students using their banner id as a key.

I Solution: Create an array of size 100, and compute the
location in the array to store the information by taking the
banner id modulo 100.

I For a student with banner id 00687581, we would store
information in location 00687581 mod 100 = 81.



Modular Arithmetic

I Pseudorandom Numbers

I Computers cannot simply generate random numbers on their
own.

I We would like to compute a deterministic series of numbers
which appear to be random.

I Linear Congruential Method:
I To compute random numbers between 0 and m, solve the

following recursive function:
I xn+1 = (a · xn + c) mod m where a and c are constants.
I Often times, x0 (the seed) is the system time mod m.



Modular Arithmetic

I Pseudorandom Numbers
I Computers cannot simply generate random numbers on their

own.

I We would like to compute a deterministic series of numbers
which appear to be random.

I Linear Congruential Method:
I To compute random numbers between 0 and m, solve the

following recursive function:
I xn+1 = (a · xn + c) mod m where a and c are constants.
I Often times, x0 (the seed) is the system time mod m.



Modular Arithmetic

I Pseudorandom Numbers
I Computers cannot simply generate random numbers on their

own.
I We would like to compute a deterministic series of numbers

which appear to be random.

I Linear Congruential Method:
I To compute random numbers between 0 and m, solve the

following recursive function:
I xn+1 = (a · xn + c) mod m where a and c are constants.
I Often times, x0 (the seed) is the system time mod m.



Modular Arithmetic

I Pseudorandom Numbers
I Computers cannot simply generate random numbers on their

own.
I We would like to compute a deterministic series of numbers

which appear to be random.

I Linear Congruential Method:

I To compute random numbers between 0 and m, solve the
following recursive function:

I xn+1 = (a · xn + c) mod m where a and c are constants.
I Often times, x0 (the seed) is the system time mod m.



Modular Arithmetic

I Pseudorandom Numbers
I Computers cannot simply generate random numbers on their

own.
I We would like to compute a deterministic series of numbers

which appear to be random.

I Linear Congruential Method:
I To compute random numbers between 0 and m, solve the

following recursive function:

I xn+1 = (a · xn + c) mod m where a and c are constants.
I Often times, x0 (the seed) is the system time mod m.



Modular Arithmetic

I Pseudorandom Numbers
I Computers cannot simply generate random numbers on their

own.
I We would like to compute a deterministic series of numbers

which appear to be random.

I Linear Congruential Method:
I To compute random numbers between 0 and m, solve the

following recursive function:
I xn+1 = (a · xn + c) mod m where a and c are constants.

I Often times, x0 (the seed) is the system time mod m.



Modular Arithmetic

I Pseudorandom Numbers
I Computers cannot simply generate random numbers on their

own.
I We would like to compute a deterministic series of numbers

which appear to be random.

I Linear Congruential Method:
I To compute random numbers between 0 and m, solve the

following recursive function:
I xn+1 = (a · xn + c) mod m where a and c are constants.
I Often times, x0 (the seed) is the system time mod m.



Modular Arithmetic

I Encryption/Decryption

I Suppose we want to send a message written with capital
letters A to Z. We can encrypt the message by replacing each
letter with the letter “three positions” to the right. For X, Y,
and Z, we use A, B, and C respectively.

I Encrypting: (p + 3) mod 26 where p is the position of the
current letter before encrypting.

I Decrypting: (q − 3) mod 26 where q is the position of the
current letter before decrypting.



Modular Arithmetic

I Encryption/Decryption
I Suppose we want to send a message written with capital

letters A to Z. We can encrypt the message by replacing each
letter with the letter “three positions” to the right. For X, Y,
and Z, we use A, B, and C respectively.

I Encrypting: (p + 3) mod 26 where p is the position of the
current letter before encrypting.

I Decrypting: (q − 3) mod 26 where q is the position of the
current letter before decrypting.



Modular Arithmetic

I Encryption/Decryption
I Suppose we want to send a message written with capital

letters A to Z. We can encrypt the message by replacing each
letter with the letter “three positions” to the right. For X, Y,
and Z, we use A, B, and C respectively.

I Encrypting: (p + 3) mod 26 where p is the position of the
current letter before encrypting.

I Decrypting: (q − 3) mod 26 where q is the position of the
current letter before decrypting.



Modular Arithmetic

I Encryption/Decryption
I Suppose we want to send a message written with capital

letters A to Z. We can encrypt the message by replacing each
letter with the letter “three positions” to the right. For X, Y,
and Z, we use A, B, and C respectively.

I Encrypting: (p + 3) mod 26 where p is the position of the
current letter before encrypting.

I Decrypting: (q − 3) mod 26 where q is the position of the
current letter before decrypting.


