
 

 

Some possibly nonintuitive behavior arises due to C’s handling of expressions 
containing combinations of signed and unsigned quantities. When an operation is 
performed where one operand is signed and the other is unsigned, C implicitly 
casts the signed argument to unsigned and performs the operations assuming the 
numbers are nonnegative. As we will see, this convention makes little difference 
for standard arithmetic operations, but it leads to nonintuitive results for relational 
operators such as < and >. Figure shows some sample relational expressions and 
their resulting evaluations, when data type int has a 32-bit two’s-complement 
representation. Consider the comparison -1 < 0U. Since the second operand is 
unsigned, the first one is implicitly cast to unsigned, and hence the expression is 
equivalent to the comparison 4294967295U < 0U (recall that T2Uw(−1) = 
UMaxw), which of course is false. The other cases can be understood by similar 
analyses. 

Effects of C promotion rules. Nonintuitive cases are marked by ‘*’. When 
either operand of a comparison is unsigned, the other operand is implicitly cast to 
unsigned. 

we write TMin32 as -2,147,483,647-1. 


