
1

Why do we choose binary for our computers? 0 and 1 are the alphabet of computer’s language. At the
hardware level, everything is either 0 or 1. 0 means switch off/no signal and 1 means switch on/signal is
present. It’s easier to store, process and transmit with only 0 and 1.

But, our human world is decimal, that means a base-10 number system. If you want to implement a
base-10 system with computers, then you need to keep track of 10 different signal levels. That will be
very complex. Therefore, we go with the base-2 number system with our computers.

See below for different number systems:

Human World

Base-10 : Decimal number system (from digit 0 to 9; 10 digits; Base-10)

Base-16: Hexadecimal number system (from digit 0 to 9 and A to F; 16 digit; Base-16)

Computer World

Base-2: Binary number system (It’s only two digits, 0 and 1; Base-2)

All our numbers in the human world are base-10 numbers. We need to convert those numbers to binary
when you are in the computer world.

Practice on decimal-to-binary conversion and binary-to-decimal conversion

2

 See this link below for binary-to-decimal conversion:

 https://www.wikihow.com/Convert-from-Binary-to-Decimal

See below an example for conversion from base 8 to decimal. But, here instead of 20 , 21 etc., we are
doing 80, 81 ….., because the base is 8.

In this example below, you are dividing by 16, because the base is 16.

https://www.wikihow.com/Convert-from-Binary-to-Decimal

3

Always pay attention to your MSB and LSB

Another quick way to convert from HEX to binary or vice versa is to by following the chart below:

****Pick up some examples and practice conversion from one base to another base

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

4

When you are representing everything at bit-level, you need to know about bit-level operations. We call
them as bit-level logic. These logics are implemented with gates (made with transistors) at hardware
level. Few basic gates are AND, OR, NOT, XOR etc.

****Pick up some examples and practice Boolean algebra like below

C language supports bit-level operations. Operations &, |, ~, ^ Available in C. See some examples
below

5

See has some logical operators too. There’s difference between logical and bit-level. The logical
operators are &&, ||, !

pay attention to your bit-level operators(&,|, ~) and logical operators and how they are different

Logical operators (&&, ||, !) : View 0 as “False”; Anything nonzero as “True”; Always return 0 or 1

Examples:

****Pick up some examples and practice the difference bit-level and logical operators

There are two types of shift operations: left shift and right shift. Right shift is two types: logical and
arithmetic. Left shift is only logical.

Example:

6

****Pick up some examples and practice shift operations

Big-endian and little-endian

In virtually all machines, a multi-byte object is stored as a contiguous sequence of bytes, with the
address of the object given by the smallest address of the bytes used. For example, suppose a variable x
of type int has address 0x100; that is, the value of the address expression &x is 0x100. Then (assuming
data type int has a 32-bit representation) the 4 bytes of x would be stored in memory locations 0x100,
0x101, 0x102, and 0x103. Note that in the word 0x01234567 the high-order byte has hexadecimal value
0x01, while the low-order byte has value 0x67. Where the least significant byte comes first—is referred
to as little endian. Where the most significant byte comes first—is referred to as big endian.

7

****Pick up some examples and practice big-endian and little-endian (practice problem)

--

When you have 4 bits, you can represent 24 numbers, that means you have 16 slots. That means you can
represent 16 integers. If you go with the unsigned representation, then you can represent from number
0 to 15, that’s your 16 numbers.

8

Here, B2U means Binary to Unsigned. See below for the conversion:

Now, if you want to represent negative numbers, then you need to do the Two’s complement encoding.
Therefore, out of your 16 slots, you use 8 slots for the positive integers and 8 slots for the negative
integers. Here, 0 considered as a positive integer. See below for the representation:

9

Here, B2T means binary to Two’s Complement Conversion. See below for the conversion:

Note that the MSB bit is negative, that’s the sign bit. If you are representing a negative integer, then you
will have your MSB as 1 in binary.

10

Now, if you try to see your binary values, unsigned integers values and signed integer values side-by-
side, you will see that the bit-value is same, but the integer value is different (depending on what kind of
representation you are going for).

If you consider only 4-bits, you will see that all the positive values are same for unsigned and signed.
But, it gets different for negative value. Let’s say you have a computer that only works with unsigned
values, and you have a computer that only works with signed values, then when you try to convert from
one computer to another (let’s say from signed to unsigned), all your negative values become positive
values.

Again, at the bit-level, 1101 remains 1101, but for an unsigned system 1101 means 13, but for a signed
system, 1101 means -3.

There’s quick way where you can go from signed to unsigned or vice versa.

11

As it’s 4-bits, therefore +/- 24 or +/- 16. If it’s 5 bits, then it will be 25 or 32…. And continues

You also need to know about Tmax, Tmin, Umax and Umin. See below for that:

12

****For 4-bits, how many integers can be represented? What will be the range for unsigned? What
will be the range for signed? Mention your Tmax, Tmin, Umax, Umin

****For 5-bits, how many integers can be represented? What will be the range for unsigned? What
will be the range for signed? Mention your Tmax, Tmin, Umax, Umin

****For 8-bits, how many integers can be represented? What will be the range for unsigned? What
will be the range for signed? Mention your Tmax, Tmin, Umax, Umin

****For 32-bits, how many integers can be represented? What will be the range for unsigned? What
will be the range for signed? Mention your Tmax, Tmin, Umax, Umin

Casting Surprise!

If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned.
Including comparison operations <, >, ==, <=, >=

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

**** Work on practice problems (6 and 9) on casting

13

Asymmetry!

• A few points are worth highlighting about these numbers. First, as observed, the two’s-
complement range is asymmetric: |TMin| =|TMax| + 1; that is, there is no positive counterpart
to TMin. As we shall see, this leads to some peculiar properties of two’s-complement arithmetic
and can be the source of subtle program bugs.

This asymmetry arises because half the bit patterns (those with the sign bit set to 1) represent negative
numbers, while half (those with the sign bit set to 0) represent nonnegative numbers. Since 0 is
nonnegative, this means that it can represent one less positive number than negative.

Second, the maximum unsigned value is just over twice the maximum two’s-complement value: UMax =
2TMax + 1. All of the bit patterns that denote negative numbers in two’s- complement notation
become positive values in an unsigned representation.

For 4-bits numbers, you have -8 (Tmin), but you don’t have +8, because of this asymmetry. The
maximum positive value you can represent is +7.

Why do we need to have unsigned representation?

For some tasks, we only need positive numbers, for example memory addresses. Why should we waste
half of our slots representing negative numbers, when we don’t need negative numbers? See below for
more tasks:

