
Section 8.17
Divide-and-Conquer Recurrence 

Relations
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A Review of Recurrence Relations for Divide-and-Conquer 
Algorithms

• Recall the recurrence relations that describe the number of operations 
used by some divide-and-conquer algorithms (Sections 8.13 and 8.14)

• Finding the minimum of a sequence:

 𝑇 1 = 2

𝑇 𝑛 = 2𝑇 𝑛/2 + 8



3

A Review of Recurrence Relations for Divide-and-Conquer 
Algorithms

• Merge Sort:

 𝑇 1 = 2

𝑇 𝑛 = 2𝑇 𝑛/2 + Θ(𝑛)

• Note: 𝑇 𝑛 = 2𝑇 𝑛/2 + Θ(𝑛) means 𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑓(𝑛) for 
some function 𝑓(𝑛) that is Θ(𝑛) 
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A Review of Recurrence Relations for Divide-and-Conquer 
Algorithms

• Binary Search: 

𝑇 1 = 3

𝑇 𝑛 =  𝑇 𝑛/2 + 9
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Divide-and-Conquer Recurrence Relation

• Many recurrence relations counting the number of operations for 
divide-and-conquer algorithms are of the form:

𝑇 1 = 𝑐

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 +  Θ 𝑛𝑑

where 𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 +  Θ 𝑛𝑑  means 𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛  for 

some function 𝑓 𝑛  that is Θ 𝑛𝑑



Consider a recurrence relation and initial condition of the following form 
where 𝑎, 𝑏, 𝑐, and 𝑑 are constants:

𝑇 1 = 𝑐

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + Θ 𝑛𝑑

 

1. If 𝑎/𝑏𝑑 = 1, then 𝑇(𝑛) is Θ 𝑛𝑑𝑙𝑜𝑔 𝑛

2. If 𝑎/𝑏𝑑 < 1, then 𝑇(𝑛) is Θ 𝑛𝑑

3. If 𝑎/𝑏𝑑 > 1, then 𝑇(𝑛) is Θ 𝑛𝑙𝑜𝑔𝑏 𝑎
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The Master Theorem



Example 1: The number of operations used by divide-and-conquer algorithm 
for finding the minimum of a sequence of length n is:

𝑇 1 = 2
𝑇 𝑛 = 2𝑇 𝑛/2 + 8

Note 8 is Θ 𝑛0

𝑎 = 2, 𝑏 = 2, 𝑑 = 0

𝑎/𝑏𝑑 = 2/ 20 = 2 > 1

𝑇(𝑛) is Θ 𝑛𝑙𝑜𝑔2 2

𝑇(𝑛) is Θ 𝑛
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Master Theorem Examples



Example 2: The number of operations used by Merge sort on a sequence of 
length n is:

𝑇 1 = 2
𝑇 𝑛 = 2𝑇 𝑛/2 + Θ(𝑛)

𝑎 = 2, 𝑏 = 2, 𝑑 = 1

𝑎/𝑏𝑑 = 2/ 21 = 1

𝑇(𝑛) is Θ 𝑛 ⋅ 𝑙𝑜𝑔(𝑛)
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Master Theorem Examples



Example 3: The number of operations used by binary search on a sequence 
of length n is:

𝑇 1 = 3
𝑇 𝑛 = 𝑇 𝑛/2 + 9

𝑎 = 1, 𝑏 = 2, 𝑑 = 0

𝑎/𝑏𝑑 = 1/ 20 = 1

𝑇(𝑛) is Θ  𝑙𝑜𝑔2(𝑛)
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Master Theorem Examples
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Building a Recursion Tree

• Example: Consider an algorithm that uses the following number of 
operations for inputs of size 𝑛:

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

Build a tree that describes the calculation of 𝑇(𝑛)
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Building a Recursion Tree

𝑇(𝑛)

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5



𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑛5
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Building a Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
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Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑇 𝑛/2𝑇 𝑛/2 𝑇 𝑛/2



3𝑇 𝑛/4 + (𝑛/2)53𝑇 𝑛/4 + (𝑛/2)53𝑇 𝑛/4 + (𝑛/2)5
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Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
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Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑇 𝑛/4𝑇 𝑛/4 𝑇 𝑛/4 𝑇 𝑛/4𝑇 𝑛/4 𝑇 𝑛/4 𝑇 𝑛/4𝑇 𝑛/4 𝑇 𝑛/4
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Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5

⋮⋮ ⋮
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Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5

⋮⋮ ⋮

⋯  1 1 1 1 1 1 1 1 1 ⋯



18

Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5

30 ⋅ 𝑛/20 5

31 ⋅ 𝑛/21 5

32 ⋅ 𝑛/22 5

⋮

⋯  1 1 1 1 1 1 1 1 1 ⋯ 3𝐿 ⋅ 𝑛/2𝐿 5

⋮ ⋮

𝐿 = 𝑙𝑜𝑔2 𝑛
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Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5

30 ⋅ 𝑛/20 5

31 ⋅ 𝑛/21 5

32 ⋅ 𝑛/22 5

⋮

⋯  1 1 1 1 1 1 1 1 1 ⋯ 3𝐿 ⋅ 𝑛/2𝐿 5

⋮ ⋮

𝐿 = 𝑙𝑜𝑔2 𝑛

𝑇 𝑛 = ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5
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Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 = ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

= ෍

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3𝑖/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛 +1

𝑎/𝑏𝑑 𝑖
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Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 = ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

= ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3𝑖/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛 +1

𝑎/𝑏𝑑 𝑖
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Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 = ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

= ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛 +1

𝑎/𝑏𝑑 𝑖
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Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 = ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

= ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛 +1

𝑎/𝑏𝑑 𝑖
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Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 = ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

= ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖/25𝑖

= 𝑛5 ⋅ ෍

𝑖=0

𝑙𝑜𝑔2 𝑛

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

𝑎/𝑏𝑑 𝑖
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Solving the Recursion Tree

𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑 𝑇(𝑛) = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

𝑎/𝑏𝑑 𝑖

Let 𝑟 = 𝑎/𝑏𝑑  (𝑟 is a constant determined by the form of the algorithm) and 
𝑚 = 𝑙𝑜𝑔𝑏 𝑛 . There is a closed form solution for the sum of exponents:

Consider 3 cases:

1.  𝑟 = 1
2.  𝑟 > 1
3.  𝑟 < 1
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Solving the Recursion Tree

1.  𝑎/𝑏𝑑 = 1

Hence 𝑇(𝑛) is Θ 𝑛𝑑𝑙𝑜𝑔 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

𝑎/𝑏𝑑 𝑖

= 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

1𝑖

= 𝑛𝑑 𝑙𝑜𝑔𝑏 𝑛 + 1 
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Solving the Recursion Tree

𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑 𝑇(𝑛) = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

𝑎/𝑏𝑑 𝑖

Let 𝑟 = 𝑎/𝑏𝑑  (𝑟 is a constant determined by the form of the algorithm) and 
𝑚 = 𝑙𝑜𝑔𝑏 𝑛 . There is a closed form solution for the sum of exponents:

𝑇(𝑛) = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖 =
𝑟𝑚+1 − 1

𝑟 − 1

When 𝑟 ≠ 1
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑

Note: since 𝑟 < 1, 𝑟𝑚+1 ≪ 1
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑
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Solving the Recursion Tree

2.  𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

Hence 𝑇(𝑛) is Θ 𝑛𝑑

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1 

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 0 

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟
 

and 𝑚0 = 0
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1 

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 1 

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟
 

and 𝑚0 = 0
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1 

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 1 

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟
 

and 𝑚0 = 1
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1 

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 1 

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟
 

and 𝑚0 = 1
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Solving the Recursion Tree

3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅ ෍

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1 

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 1 

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟
 

and 𝑚0 = 1



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

48

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

49

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

50

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

51

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

52

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

53

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑙𝑜𝑔 𝑥𝑦 = 𝑦 ⋅ 𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔𝑏 𝑛 ⋅ 𝑙𝑜𝑔𝑏 𝑎 = 𝑙𝑜𝑔𝑏 𝑎 ⋅ 𝑙𝑜𝑔𝑏 𝑛

𝑙𝑜𝑔𝑏 𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑙𝑜𝑔𝑏 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

54

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑙𝑜𝑔 𝑥𝑦 = 𝑦 ⋅ 𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔𝑏 𝑛 ⋅ 𝑙𝑜𝑔𝑏 𝑎 = 𝑙𝑜𝑔𝑏 𝑎 ⋅ 𝑙𝑜𝑔𝑏 𝑛

𝑙𝑜𝑔𝑏 𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑙𝑜𝑔𝑏 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛
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Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑙𝑜𝑔 𝑥𝑦 = 𝑦 ⋅ 𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔𝑏 𝑛 ⋅ 𝑙𝑜𝑔𝑏 𝑎 = 𝑙𝑜𝑔𝑏 𝑎 ⋅ 𝑙𝑜𝑔𝑏 𝑛

𝑙𝑜𝑔𝑏 𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑙𝑜𝑔𝑏 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎



3.  𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑  and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

56

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑙𝑜𝑔 𝑥𝑦 = 𝑦 ⋅ 𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔𝑏 𝑛 ⋅ 𝑙𝑜𝑔𝑏 𝑎 = 𝑙𝑜𝑔𝑏 𝑎 ⋅ 𝑙𝑜𝑔𝑏 𝑛

𝑙𝑜𝑔𝑏 𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑙𝑜𝑔𝑏 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎



Consider a recurrence relation and initial condition of the following form 
where 𝑎, 𝑏, and 𝑑 are constants:

𝑇 1  is a constant

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + Θ 𝑛𝑑

 

1. If 𝑎/𝑏𝑑 = 1, then 𝑇(𝑛) is Θ 𝑛𝑑𝑙𝑜𝑔 𝑛

2. If 𝑎/𝑏𝑑 < 1, then 𝑇(𝑛) is Θ 𝑛𝑑

3. If 𝑎/𝑏𝑑 > 1, then 𝑇(𝑛) is Θ 𝑛𝑙𝑜𝑔𝑏 𝑎
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The Master Theorem
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