
Application
Programming

Hend Alkittawi

Version Control

Introduction To Git And Github

INTRODUCTION

We watched a few videos from the following course on
Udacity:

Version Control With Git

https://learn.udacity.com/courses/ud123

VERSION CONTROL

- Collaborative software development necessitates a system for

source control and versioning!

- A version control system facilitates simultaneous updates to

the same software and manages any conflicts created!

- There are a few version control system options

- CVS - Concurrent Versions System

- SVN - Apache Subversion

- GIT - a distributed VCS (not the only one)

VERSION CONTROL

GIT

- Developed by Linus Torvalds around 2005

- Open source, under the GNU GPL (General Public License)

- Distributed, in that every directory on every computer is a

full-fledged repository

- It has a complete history, version-tracking capabilities

- Independent of network access, or a central server

- Use as command-line or via GUI

GIT

- To create a local Git Repo

1. Create a new project directory mkdir WorkingDir

2. Move into that new directory cd WorkingDir

3. Initialize Git repository git init

4. Create/edit project files

5. Stage files in the project directory git add .

6. Commit tracked files in Git storage git commit -m "a msg"

Git Repository

Working Directory Staging Area

file1 file2

GITHUB

- Web-based Git repository hosting service

- Provides cloud storage, public/private

repos, free accounts

- Home to lots of open source software!

- To use Github

1. Access a remote repository on Github.com

2. Pull down the latest version of the code to local git pull

3. Add edited files to the source code git add File.java

4. Commit edits to the local version git commit -m "short msg"

5. Push the changes out to the server git push

VERSION CONTROL

- Summary of Git Terminology

- Repo - repository

- Init - initialize a repository

- Commit

- Push/Pull

- Clone - copy a remote repo locally

- Branch - a separate version of the main repo that allows

working on different parts of a project without impacting the

main branch.

VERSION CONTROL

- Git and Github

- You can choose how you want to use Git and Github

- Command line

- Browser http://github.com

- GitHub Desktop http://desktop.github.com

- IDE

VERSION CONTROL

- Some useful resources

- Hints for using eGit (Eclipse plugin)

- Resolving merge conflicts

- Effective Git: https://git-scm.com/book/en/v2

- Tutorial: https://try.github.io/

http://cs.utsa.edu/~cs3443/git/egit-hints.html
http://cs.utsa.edu/~cs3443/git/merge-conflicts.html
https://git-scm.com/book/en/v2
https://try.github.io/

README FILES

- A code readme file should include dependencies, description of

functionality, etc.

- A repo readme file should describe project(s) in the repo,

contributors, functionality, license(s), contribution

guidelines, known issues, ….

- A README file is created using markdown language!

- Example: README.md template · GitHub

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://gist.github.com/jxson/1784669

README FILES

- More Readme

- A Beginners Guide to writing a Kickass README ✍ | by Akash

- Top ten reasons why I won't use your open source project |>

Changelog

- GitHub - hackergrrl/art-of-readme: :love_letter: Things I've

learned about writing good READMEs.

- How To Write A Great README

- GitHub - jehna/readme-best-practices: Best practices for writing a

README for your open source project

- zalando-howto-open-source/READMEtemplate.md at master

https://medium.com/@meakaakka/a-beginners-guide-to-writing-a-kickass-readme-7ac01da88ab3
https://changelog.com/posts/top-ten-reasons-why-i-wont-use-your-open-source-project
https://changelog.com/posts/top-ten-reasons-why-i-wont-use-your-open-source-project
https://github.com/noffle/art-of-readme
https://github.com/noffle/art-of-readme
https://robots.thoughtbot.com/how-to-write-a-great-readme
https://github.com/jehna/readme-best-practices
https://github.com/jehna/readme-best-practices
https://github.com/zalando/zalando-howto-open-source/blob/master/READMEtemplate.md

TUTORIAL

Using Git/Github in
Android Studio

Generate a personal access token and save it somewhere! (Under your

Github account > Settings > Developer Settings)

Check the repository created under your team in CS3443 Github

organization OR create your own repository under your account

Create your project in Android Studio then create a local Git repo

(Android Studio > VCS > Enable Version Control Integration, select Git)

Create your project in Android Studio then create a local Git repo

(Android Studio > VCS > Enable Version Control Integration, select Git)

Stage files (Right click on app > Git > Add)

Commit to local repo (Right click on app > Git > Commit Directory…) and

add the unversioned files

Rename local branch to main (to match the remote branch name)

-- IMPORTANT --

Copy the https URL for the remote repo

Add the remote repo

Add the remote repo

Add the remote repo

Fetch

Note: Since we added a README to the remote repo we need Rebase before

we Pull. You do not need to Rebase before you Pull if you did not

create a README in the remote repo - you can skip slides 27 and 28.

Rebase (we are just using it here because our local and remote repos

initially do not have a “common history”)

Pull from remote repo

Pull from remote repo

Push to remote repo

Push to remote repo

Modify file(s) on Github (similar to if someone else modifies the files)

Modify file(s) on Github (similar to if someone else modifies the files)

Pull changes to local repo

Modify file(s) locally

Stage, commit and push to remote repo (like above)

Check the remote repo

CODE DEMO

- Show how to use Git in

Android Studio

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

