CS 3333: Mathematical Foundations

Elementary Matrix Operations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let A be a square matrix of size n.

- Let A be a square matrix of size n.
- ▶ If $|A| \neq 0$, then A is a **non-singular** matrix, and there exists an $n \times n$ matrix, denoted A^{-1} , such that $A \cdot A^{-1} = I_n$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Let A be a square matrix of size n.
- If |A| ≠ 0, then A is a non-singular matrix, and there exists an n × n matrix, denoted A⁻¹, such that A · A⁻¹ = I_n.
 A⁻¹ is unique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 be a 2 × 2 matrix such that $|A| \neq 0$.

Let A =
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 be a 2 × 2 matrix such that |A| ≠ 0.
 That is, ad - bc ≠ 0.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let A =
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 be a 2 × 2 matrix such that |A| ≠ 0.
 That is, ad - bc ≠ 0.

• Then we can compute A^{-1} in the following way:

$$\blacktriangleright A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}$$

• One can verify that $A \cdot A^{-1} = I_2$.

It is more complicated to compute the inverse of larger square matrix.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, |A| = 1 * 4 - 3 * 2 = -2,$$
$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

•
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, |A| = 1 * 4 - 3 * 2 = -2,$$

 $A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
• $A^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, |A| = 1 * 4 - 3 * 2 = -2,$$
$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$A^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$
$$A * A^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} * \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, |A| = 1 * 4 - 3 * 2 = -2,$$

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$A^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

$$A * A^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} * \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

$$A * A^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} * \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

$$A * A^{-1} = \begin{pmatrix} 1 & (-2) + 2 * \frac{3}{2} & 1 * 1 + 2 * (-\frac{1}{2}) \\ 3 * (-2) + 4 * \frac{3}{2} & 3 * 1 + 4 * (-\frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• We can calculate the inverse of a $n \times n$ square matrix A via the Gauss-Jordan elimination method.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▶ We can calculate the inverse of a *n* × *n* square matrix *A* via the **Gauss-Jordan elimination method**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• We begin by writing I_n to the right of A:

We can calculate the inverse of a n × n square matrix A via the Gauss-Jordan elimination method.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• We begin by writing I_n to the right of A:

	a_{11}	a_{12}	• • •	a_{1n}		1	0	• • •	0
	a_{21}	a ₂₂	• • •	a _{2n}		0	1	• • •	0
	÷			÷		÷			÷
	a_{n1}	a _{n2}		a _{nn}	i	0	0		1

We can calculate the inverse of a n × n square matrix A via the Gauss-Jordan elimination method.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• We begin by writing I_n to the right of A:

We can calculate the inverse of a n × n square matrix A via the Gauss-Jordan elimination method.

• We begin by writing I_n to the right of A:

- We call this matrix an augmented matrix.
- We then use elementary row operations to reduce the left half of the augmented matrix to the identity matrix. The right half of the resulting augmented matrix is A⁻¹.

• We end by writing I_n to the left and A^{-1} to the right:

(ロ)、(型)、(E)、(E)、 E) のQ(()

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

We may be interested in modifying a matrix by an Elementary Row Operation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- We may be interested in modifying a matrix by an Elementary Row Operation.
- Consider the system of three equations in three unknowns

•
$$x_1 + x_3 = 1$$

• $2x_1 + x_2 = 3$
• $x_2 + 2x_3 = 1$

• It can be written in matrix form as Ax = b where • $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$

Switch the first equation with the second one. We get

- We may be interested in modifying a matrix by an Elementary Row Operation.
- Consider the system of three equations in three unknowns

•
$$x_1 + x_3 = 1$$

• $2x_1 + x_2 = 3$
• $x_2 + 2x_3 = 1$

It can be written in matrix form as Ax = b where $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ Switch the first equation with the second one. We get

•
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$

- We may be interested in modifying a matrix by an Elementary Row Operation.
- Consider the system of three equations in three unknowns

•
$$x_1 + x_3 = 1$$

• $2x_1 + x_2 = 3$
• $x_2 + 2x_3 = 1$

► It can be written in matrix form as Ax = b where ► $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$

Multiply with the constant 3 on the second equation. We get

- We may be interested in modifying a matrix by an Elementary Row Operation.
- Consider the system of three equations in three unknowns

•
$$x_1 + x_3 = 1$$

• $2x_1 + x_2 = 3$
• $x_2 + 2x_3 = 1$

It can be written in matrix form as Ax = b where $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$

Multiply with the constant 3 on the second equation. We get

•
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 6 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 1 \\ 9 \\ 1 \end{pmatrix}$$

- We may be interested in modifying a matrix by an Elementary Row Operation.
- Consider the system of three equations in three unknowns

•
$$x_1 + x_3 = 1$$

• $2x_1 + x_2 = 3$
• $x_2 + 2x_3 = 1$

- ► It can be written in matrix form as Ax = b where ► $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$
- Replace the second equation by the sum of second equation and -2*first equation. We get

A D N A 目 N A E N A E N A B N A C N

- We may be interested in modifying a matrix by an Elementary Row Operation.
- Consider the system of three equations in three unknowns

•
$$x_1 + x_3 = 1$$

• $2x_1 + x_2 = 3$
• $x_2 + 2x_3 = 1$

► It can be written in matrix form as Ax = b where ► $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$

 Replace the second equation by the sum of second equation and -2*first equation. We get

A D N A 目 N A E N A E N A B N A C N

$$\blacktriangleright A = \begin{pmatrix} 1 & 0 & 1 \\ \mathbf{0} & \mathbf{1} & -\mathbf{2} \\ 0 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} b = \begin{pmatrix} 3 \\ \mathbf{1} \\ 1 \end{pmatrix}$$

- We have the following Elementary Row Operations in modifying a matrix.
- 1. Row switching
- 2. Row multiplication by a constant
- 3. Replace a row by a sum of that row and a multiple of another row.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Any non-singular matrix can be reduced to an identity matrix using these elementary row operations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Any non-singular matrix can be reduced to an identity matrix using these elementary row operations.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We can define elementary column operations similarly.

We can use the inverse of a matrix to solve a system of linear equations (Ax = b).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

We can use the inverse of a matrix to solve a system of linear equations (Ax = b).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$x_1 + 2x_2 + x_3 = 4 3x_1 - 4x_2 + 2x_3 = 2$$

▶ $5x_1 + 3x_2 + 5x_3 = -1$

We can use the inverse of a matrix to solve a system of linear equations (Ax = b).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\begin{array}{l} \bullet \quad x_1 + 2x_2 + x_3 = 4 \\ \bullet \quad 3x_1 - 4x_2 + 2x_3 = 2 \\ \bullet \quad 5x_1 + 3x_2 + 5x_3 = -1 \\ \bullet \quad \begin{pmatrix} 1 \quad 2 \quad 1 \\ 3 \quad -4 \quad 2 \\ 5 \quad 3 \quad 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}. \end{array}$$

We can use the inverse of a matrix to solve a system of linear equations (Ax = b).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\begin{array}{l} \mathbf{x}_{1} + 2x_{2} + x_{3} = 4 \\ \mathbf{x}_{1} - 4x_{2} + 2x_{3} = 2 \\ \mathbf{x}_{1} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{1} & 2 & 1 \\ \mathbf{x}_{2} & -4 & 2 \\ 5 & 3 & 5 \end{array} \cdot \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}.$$

• If A is non-singular, then A^{-1} exists.

We can use the inverse of a matrix to solve a system of linear equations (Ax = b).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\begin{array}{l} \mathbf{x}_{1} + 2x_{2} + x_{3} = 4 \\ \mathbf{x}_{1} - 4x_{2} + 2x_{3} = 2 \\ \mathbf{x}_{1} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{1} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{2} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{2} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{3} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{2} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{3} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{4} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{5} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{2} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{3} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{4} + 3x_{2} + 5x_{3} = -1 \\ \mathbf{x}_{5} + 3x_{3} + 5x_{3} = -1 \\ \mathbf{x}_{5} + 3x_{5} + 5x_{5} = -1 \\ \mathbf{x}_{5} + 3x_{5} + 5x_{5} = -1 \\ \mathbf{x}_{5} + 5$$

• If A is non-singular, then A^{-1} exists.

$$A^{-1}Ax = A^{-1}b \implies lx = A^{-1}b \implies x = A^{-1}b.$$

We can use the inverse of a matrix to solve a system of linear equations (Ax = b).

$$x_1 + 2x_2 + x_3 = 4
 3x_1 - 4x_2 + 2x_3 = 2
 5x_1 + 3x_2 + 5x_3 = -1
 \begin{pmatrix} 1 & 2 & 1 \\ 3 & -4 & 2 \\ 5 & 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}.$$

• If A is non-singular, then A^{-1} exists.

$$A^{-1}Ax = A^{-1}b \implies lx = A^{-1}b \implies x = A^{-1}b.$$

Therefore, if we compute A⁻¹, we can solve the system of linear equations by computing A⁻¹b.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

$$A_{X} = b \cdot A^{-1}A_{X} = A^{1} \cdot b$$

$$\Rightarrow X = A^{-1} \cdot b$$

$$X = \begin{pmatrix} x_{1} \\ y_{2} \\ y_{3} \end{pmatrix} = \begin{pmatrix} 26 & 1 & -\frac{5}{7} \\ y_{3} & 0 & -\frac{1}{7} \\ -\frac{1}{7} & -1 & \frac{19}{7} \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$$

$$x_{1} = \frac{26}{7} \cdot 4 + \frac{1}{2} + \frac{9}{7} = \frac{18}{7}$$

$$x_{2} = \frac{5}{7} \cdot 4 + \frac{1}{2} + \frac{9}{7} = -\frac{18}{7}$$

$$x_{3} = -\frac{34}{7} \cdot 4 + -\frac{1}{2} + \frac{-6}{7} = -20$$

(ロ)、(型)、(E)、(E)、(E)、(O)()