Aside RISC and CISC instruction sets

x86-64 is sometimes labeled as a “complex instruction set computer™ (CISC—pronounced “sisk™),
and is deemed to be the opposite of ISAs that are classified as “reduced instruction set computers”
(RISC—pronounced “risk™). Historically, CISC machines came first, having evolved from the earliest
computers. By the early 1980s, instruction sets for mainframe and minicomputers had grown quite large,
as machine designers incorporated new instructions to support high-level tasks, such as manipulating
circular buffers, performing decimal arithmetic, and evaluating polynomials. The first microprocessors
appeared in the early 1970s and had limited instruction sets. because the integrated-circuit technology
then posed severe constraints on what could be implemented on a single chip. Microprocessors evolved
quickly and, by the early 1980s, were following the same path of increasing instruction set complexity
that had been the case for mainframes and minicomputers. The x86 family took this path, evolving into
IA32, and more recently into x86-64. The x86 line continues to evolve as new classes of instructions are
added based on the needs of emerging applications.

The RISC design philosophy developed in the early 1980s as an alternative to these trends. A group
of hardware and compiler experts at IBM, strongly influenced by the ideas of IBM researcher John
Cocke, recognized that they could generate efficient code for a much simpler form of instruction set. In
fact, many of the high-level instructions that were being added to instruction sets were very difficult to
generate with a compiler and were seldom used. A simpler instruction set could be implemented with
much less hardware and could be organized in an efficient pipeline structure. similar to those described
later in this chapter. IBM did not commercialize this idea until many years later, when it developed the
Power and PowerPC ISAs.

The RISC concept was further developed by Professors David Patterson, of the University of
California at Berkeley, and John Hennessy, of Stanford University. Patterson gave the name RISC to
this new class of machines, and CISC to the existing class, since there had previously been no need to
have a special designation for a nearly universal form of instruction set.

When comparing CISC with the original RISC instruction sets, we find the following general
characteristics:

CISC Early RISC

Many fewer instructions—typically less than 100.

A large number of instructions. The Intel
document describing the complete set of
mnstructions [51] is over 1,200 pages long.

Some instructions with long execution times.
These include instructions that copy an entire
block from one part of memory to another and
others that copy multiple registers to and from
memaory.

Variable-size encodings. x86-64 instructions can
range from 1 to 15 bytes.

No instruction with a long execution time. Some
early RISC machines did not even have an
integer multiply instruction, requiring compilers
to implement multiplication as a sequence of
additions.

Fixed-length encodings. Typically all instructions
are encoded as 4 bytes.



Aside

CISC

RISC and CISC instruction sets (continued)

Early RISC

Multiple formats for specifying operands. In x86-
64, a memory operand specifier can have many
different combinations of displacement, base
and index registers, and scale factors.

Arithmetic and logical operations can be applied
to both memory and register operands.

Implementation artifacts hidden from machine-
level programs. The ISA provides a clean
abstraction between programs and how they
get executed.

Condition codes. Special flags are set as a
side effect of instructions and then used for
conditional branch testing.

Stack-intensive procedure linkage. The stack
is used for procedure arguments and return
addresses.

Simple addressing formats. Typically just base
and displacement addressing.

Arithmetic and logical operations only use
register operands. Memory referencing is only
allowed by load instructions, reading from
memory into a register, and store instructions,
writing from a register to memory. This
convention is referred to as a load/store
architecture.

Implementation artifacts exposed to machine-
level programs. Some RISC machines prohibit
particular instruction sequences and have
jumps that do not take effect until the following
instruction is executed. The compiler is given
the task of optimizing performance within these
constraints.

No condition codes. Instead, explicit test
instructions store the test results in normal
registers for use in conditional evaluation.

Register-intensive procedure linkage. Registers
are used for procedure arguments and return
addresses. Some procedures can thereby avoid
any memory references. Typically, the processor
has many more (up to 32) registers.

The Y86-64 instruction set includes attributes of both CISC and RISC instruction sets. On the
CISC side, it has condition codes and variable-length instructions, and it uses the stack to store return
addresses. On the RISC side, it uses a load/store architecture and a regular instruction encoding, and it
passes procedure arguments through registers. [t can be viewed as taking a CISC instruction set (x86)
and simplifying it by applying some of the principles of RISC.



Aside The RISC versus CISC controversy

Through the 1980s, battles raged in the computer architecture community regarding the merits of RISC
versus CISC instruction sets. Proponents of RISC claimed they could get more computing power for
a given amount of hardware through a combination of streamlined instruction set design, advanced
compiler technology. and pipelined processor implementation. CISC proponents countered that fewer
CISC instructions were required to perform a given task, and so their machines could achieve higher
overall performance.

Major companies introduced RISC processor lines, including Sun Microsystems (SPARC). IBM
and Motorola (PowerPC), and Digital Equipment Corporation (Alpha). A British company, Acorn
Computers Ltd.. developed its own architecture, ARM (originally an acronym for “Acorn RISC
machine™), which has become widely used in embedded applications, such as cell phones.

In the early 1990s, the debate diminished as it became clear that neither RISC nor CISC in their
purest forms were better than designs that incorporated the best ideas of both. RISC machines evolved
and introduced more instructions, many of which take multiple cycles to execute. RISC machines
today have hundreds of instructions in their repertoire. hardly fitting the name “reduced instruction
set machine.” The idea of exposing implementation artifacts to machine-level programs proved to be
shortsighted. As new processor models were developed using more advanced hardware structures,
many of these artifacts became irrelevant, but they still remained part of the instruction set. Still, the
core of RISC design is an instruction set that is well suited to execution on a pipelined machine.

More recent CISC machines also take advantage of high-performance pipeline structures. As we
will discuss in Section 5.7, they fetch the CISC instructions and dynamically translate them into a
sequence of simpler, RISC-like operations. For example, an instruction that adds a register to memory
is translated into three operations: one to read the original memory value, one to perform the addition,
and a third to write the sum to memory. Since the dynamic translation can generally be performed well
in advance of the actual instruction execution, the processor can sustain a very high execution rate.

Marketing issues, apart from technological ones, have also played a major role in determining the
success of different instruction sets. By maintaining compatibility with its existing processors, Intel with
x86 made it easy to keep moving from one generation of processor to the next. As integrated-circuit
technology improved, Intel and other x86 processor manufacturers could overcome the inefficiencies
created by the original 8086 instruction set design, using RISC techniques to produce performance
comparable to the best RISC machines. As we saw in Section 3.1. the evolution of IA32 into x86-64
provided an opportunity to incorporate several features of RISC into the x86 family. In the areas of
desktop. laptop, and server-based computing, x86 has achieved near total domination.

RISC processors have done very well in the market for embedded processors. controlling such
systems as cellular telephones, automobile brakes, and Internet appliances. In these applications, saving
on cost and power is more important than maintaining backward compatibility. In terms of the number
of processors sold, this is a very large and growing market.



