
Application
Programming

Hend Alkittawi

Basic Java Data Structures

Arrays and ArrayLists, Wrapper
Classes and Static Methods

JAVA ARRAYS
- Arrays in Java are objects which can be declared

- by size
int[] myNumbers = new int[4];
Employee[] employees = new Employee[10];

- by values directly (using an array initializer)
double[] myNumbers = {10.5, 20.34, 30.8, 40.12};
Account[] accounts = {accountOne, accountTwo};

- Access values in an array by providing an index
double x = myNumbers[0];

- Overwrite values at an index by using assignment
x = x + 5;
myNumbers[1] = x;

- Loop over array elements to fill array, modify elements,… etc.
for (int i = 0; i < myNumbers.length; i++){

myNumbers[i] = i * 10;
System.out.println(myNumbers[i]);

}

JAVA ARRAYS

- Recall the String manipulation methods

String stringA = "I’m out of candy corn, send help!";
for(int i = 0; i < stringA.length(); i++){
 char c = stringA.charAt(i);
 System.out.print(c);
}

String[] sentences = stringA.split(",");
System.out.println(sentences.length);
System.out.println(sentences[1].trim());

JAVA ARRAYLISTS

- An ArrayList object is an array that can grow or shrink as

needed! Use an ArrayList when you don’t know how many of

something you need.

- To create an ArrayList:

ArrayList<Integer> grades = new ArrayList<Integer>();

ArrayList<String> letters = new ArrayList<String>();

ArrayList<Employee> employees = new ArrayList<Account>();

ArrayList<Account> accounts = new ArrayList<Account>();

More on generics later!

JAVA ARRAYLISTS

- Some useful methods for working with ArrayLists:

- add() to add an object to the ArrayList

- get(int index) to get an object from the ArrayList

- contains() to check if an element is in the ArrayList

- size() to get the number of elements currently in the ArrayList

- remove(int index) to remove an object from an index in the
ArrayList

ArrayList<Integer> grades = new ArrayList<Integer>();
 grades.add(5);

boolean present = grades.contains(7);
 ArrayList<String> letters = new ArrayList<String>();

 letters.add("CS3443");

WRAPPER CLASSES

- Each primitive data type has a corresponding wrapper class,

which enables you to manipulate primitive type values as

objects. For example:

- double has Double

- int has Integer

- char has Character

- boolean has Boolean

WRAPPER CLASSES

- The conversion between the primitive data type and wrapper

class type is mostly automatic

- converting a primitive type to wrapper class is called

autoboxing.

- converting a wrapper class object to primitive type is called
unboxing.

Double dbox = Math.sqrt(2); // autoboxing
double d = 1.0 / dbox; // unboxing

WRAPPER CLASSES

- Wrapper classes provide several methods for manipulating data.

- Some of the methods provided by these classes:

- Double.parseDouble() to translate a String into a double value

- Integer.parseInt() to translate a String into a int value

- Character.getNumericValue() to translate a specified Unicode

character into the int value that it represents.

- Note that there is no object associated with these methods

STATIC METHODS

- Methods we have seen so far execute in response to method

calls on specific objects.

- Sometimes a method performs a task that does not depend on an

object. These methods are called static/class methods.

- To declare a method as static, place the static keyword before

the return type in the method’s declaration.

public static void myMethod(arguments) { method body }

- To call a class’s static method, specify the class name

followed by a dot (.), and the method name.

ClassName.methodName(arguments);

STATIC METHODS

- Some of the static methods in the String class:

- String.valueOf() to get the String value of a given variable

of a primitive type

String s = String.valueOf(350.4);
System.out.println(s.charAt(3));

- String.format() to format a string, similar to sprintf in C.

String.format("Account object: name = %s, balance =

$%.2f", name, balance);

STATIC METHODS

- The class Math contains static methods for performing basic

numeric operations such as the elementary exponential,

logarithm, square root, and trigonometric functions

- Here are a few class methods to try:

double absValPos = Math.abs(13)
double absValNeg = Math.abs(-13)
double minVal = Math.min(3, 4)

OBJECT VS. STATIC METHODS

- There are two types of methods in Java

- Object methods

- Associated with an object

- Sent as a message to an object

- Implicitly passed to the current object

- Keyword: this

- Class/Static methods

- Not associated with a particular object

- Sent as a message to a class

- Keyword: static

● When to use static methods - Stack Overflow

https://stackoverflow.com/questions/2671496/when-to-use-static-methods

CLASS ACTIVITY

- Given the strings below, which of the following lines contain

an object method?

String greeting = "HI";

String obvious = "This is a string";

String strWithSpace = " This is a string. ";

1. greeting.toLowerCase();

2. String.valueOf(55);

3. obvious.indexOf("is");

4. String.valueOf(17.8);

5. strWithSpace.trim();

CLASS ACTIVITY

- Given the strings below, which of the following lines contain

an object method?

String greeting = "HI";

String obvious = "This is a string";

String strWithSpace =᳚ " This is a string. ";

1. greeting.toLowerCase();

2. String.valueOf(55);

3. obvious.indexOf("is");

4. String.valueOf(17.8);

5. strWithSpace.trim();

ARRAYS AND ARRAYLISTS IN A JAVA CLASS

- In the case where a class variable contains a data structure,

multiple setter methods should be created.

- Setter to set the value of the entire data structure

- Setter/Adder to add just one value to the data structure

public class HelloWorld{
private String[] messages;
public void setMessages(String[] texts){

this.messages = texts;
}
public void addMessage (String text){

This.messages[0] = text;
}
public void addMessage (String text, int index){

// code to add the value of text to the array
}

}

 Method Overloading

ENHANCED for STATEMENT

- The enhanced for statement iterates through the elements of an

array/arraylist without using a counter!

for (paramType parameter : arrayName){
 /* statements that read/obtain array elements, cannot
modify elements with the enhanced for statement */
}

- parameter has a type and an identifier.

- the type of the parameter must be consistent with the the type

of elements in the array

for (int x : myNumbers){
 sum = sum + x;
}

JAVA PACKAGES

- Related classes are typically grouped into packages so that

they can be imported into programs and reused.

- The ArrayList class is part of the java.util package, so the

package need to be imported to your class to be able to use

the ArrayList class.

import java.util.ArrayList;

- The package java.lang is implicitly imported by the compiler,

so it is not necessary to import classes in that package to

use them.

- String and Math are examples of classes in java.lang package

CODE DEMO

- Create class(es) to
demo the use of arrays
and arraylists!

- Create a class to demo
static methods and
variables.

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

