CS 3333: Math Foundation of CS

Number Systems: examples of conversion

Other number systems to decimal system

• Theorem 1: Let b an integer greater than 1. Then if *n* is a positive integer, it can be expressed uniquely in the form

• $n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$,

where k is a nonnegative integer, a_0 , a_1 , ..., a_k are nonnegative integers less than b, and $a_k \neq 0$.

Other number systems to decimal system

• Theorem 1: Let b an integer greater than 1. Then if *n* is a positive integer, it can be expressed uniquely in the form

• $n = a_k b^k + a_{k-1} b^{k-1} + ... + a_1 b + a_0$, where k is a nonnegative integer, $a_0, a_1, ..., a_k$ are nonnegative integers less than b, and $a_k \neq 0$.

- Examples of converting to decimal numbers:
- $(1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 1)_2 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 351$
- $(7016)_8 = 7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8 + 6 = 3598$
- $(2AEOB)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627$

- Decimal -> Binary
- Decimal -> Octal
- Decimal -> Hexadecimal

- Decimal -> Binary
 - $(241)_{10} = (XXXXXXXXX)_2$

- Decimal -> Binary
 - $(241)_{10} = 2 \cdot 120 + 1$ (divided by 2) $120 = 2 \cdot 60 + 0$ $60 = 2 \cdot 30 + 0$ $30 = 2 \cdot 15 + 0$
 - $15 = 2 \cdot 7 + 1$ $7 = 2 \cdot 3 + 1$
 - $3 = 2 \cdot 1 + 1$
 - $1 = 2 \cdot 0 + 1$
 - $(241)_{10} = (1111\ 0001)_2$

- Decimal -> Binary
- Decimal -> Octal
- Decimal -> Hexadecimal

- Decimal -> Octal
- $(12345)_{10} = (XXXX)_8$ $= 8 \cdot 1543 + 1$ (divided by 8) $1543 = 8 \cdot 192 + 7$ $192 = 8 \cdot 24 + 0$ $24 = 8 \cdot 3 + 0$ $3 = 8 \cdot 0 + 3$ • $(12345)_{10} = (30071)_8$

- Decimal -> Binary
- Decimal -> Octal
- Decimal -> Hexadecimal

- Decimal -> Hexadecimal
- $(177130)_{10} = 16 \cdot 11070 + 10$ (divided by 16) $11070 = 16 \cdot 691 + 14$ $691 = 16 \cdot 43 + 3$ $43 = 16 \cdot 2 + 11$ $2 = 16 \cdot 0 + 2$ • (177130) = (283EA)
- $(177130)_{10} = (2B3EA)_{16}$

- Binary <-> Octal
- Binary <-> Hexadecimal
- Octal <-> Hexadecimal

- Binary <-> Octal
- $(11\ 1110\ 1011\ 1100)_2 = (XXXX)_8$

- Binary <-> Octal
- (11 1110 1011 1100)₂ = (XXXX)₈
 = (11 111 010 111 100)₂ (grouped by 3)
 = (011 111 010 111 100)₂
 = (3 7 2 7 4)₈

- Binary <-> Octal
- (11 1110 1011 1100)₂ = (XXXX)₈ = (11 111 010 111 100)₂ (grouped by 3) = (011 111 010 111 100)₂ = (37274)₈
 (37274)₈ = (XXXXX)₂

- Binary <-> Octal
- (11 1110 1011 1100)₂ = (XXXX)₈ = (11 111 010 111 100)₂ (grouped by 3) = (011 111 010 111 100)₂ = (3 7 2 7 4)₈
 (3 7 2 7 4)₈ = (XXXXX)₂
- $= (011 \ 111 \ 010 \ 111 \ 100)_2$

- Binary <-> Hexadecimal
- $(11\ 1110\ 1011\ 1100)_2 = (XXXX)_{16}$

- Binary <-> Hexadecimal
- $(11\ 1110\ 1011\ 1100)_2 = (XXXX)_{16}$ = $(11\ 111\ 010\ 111\ 100)_2$ (grouped by 4)
 - = (0011 1110 1011 1100)₂
 - $= (3 E B C)_{16}$

- Binary <-> Hexadecimal
- (11 1110 1011 1100)₂ = (XXXX)₁₆ = (11 111 010 111 100)₂ (grouped by 4) = (0011 1110 1011 1100)₂ = (3 E B C)₁₆
 (3 E B C)₁₆ = (XXXXX)₂

- Binary <-> Hexadecimal
- (11 1110 1011 1100)₂ = (XXXX)₁₆ = (11 111 010 111 100)₂ (grouped by 4) = (0011 1110 1011 1100)₂ = (3 E B C)₁₆
 (3 E B C)₁₆ = (XXXXX)₂
- $= (0011 \ 1110 \ 1011 \ 1100)_2$

- Binary <-> Octal
- Binary <-> Hexadecimal
- Octal <-> Hexadecimal

- Binary <-> Octal
- Binary <-> Hexadecimal
- Octal <-> Hexadecimal
 - Octal <-> Binary <-> Hexadecimal