
Section 7.1
An Introduction to Algorithms

1



Algorithm

• An algorithm is a finite sequence of precise (and effective) 
instructions for solving a problem

• effective: capable of being done in a finite amount of time

2



Algorithm

• Example: Find the largest integer in a finite sequence of integers

1. Set the temporary maximum to the first integer in the sequence

2. Compare the next integer in the sequence to the temporary maximum. If it 
is larger than the temporary maximum, set the temporary maximum to be 
this integer

3. Repeat the previous step for the other integers in the sequence

4. Stop when there are no unexamined integers in the sequence. The 
temporary maximum is the largest integer in the sequence

3



Pseudocode

• Pseudocode can be used to describe algorithms

• Pseudocode looks like a real programming language

• It is precise and unambiguous like a real programming language

• Its individual instructions are easy to understand for people with 
programming experience

• It allows to us to describe algorithms more compactly instead of having to 
describe them in a natural language such as English

4



Pseudocode

• Assignment

• Assigns the result of evaluating an expression to a variable

• Examples:

• x := 4

• z := z + 1

5



Pseudocode

• Return

• Specifies the output of an algorithm

• Examples:

• return(0)

• return(x+y)

6



Pseudocode

• If statement

• Conditional execution

• Example:

• if (a = 0)
count := count + 1

 end-if

7



Pseudocode

• If-else statement

• Example:

• if (a > 0)
quotient := b / a;

 else

quotient := 0;

 end-if

8



Pseudocode

• For loop

• Repeated execution

• Example:

• for i := 1 to 3
sum := sum + i

 end-for

9



Pseudocode

• While loop

• Repeated execution

• Example: (Count the number of digits in a positive integer)

• count := 1
 while (n > 9)

count := count + 1

n := n / 10

 end-while

 return(count)

10



Pseudocode

• Nested loops

• Repeated execution

• Example: (Count the number of ways that one die roll can be 
greater than another die roll)

• count := 0
 for i := 1 to 6

for j := i+1 to 6
count := count + 1

end-for
 end-for
 return(count)

11



Specifying an Algorithm

An algorithm can be specified by naming it, describing its inputs and 
outputs, and providing its pseudocode

12



Remainder Algorithm

• Example: Computing a remainder

• Name: remainder

• Input: non-negative integers 𝑎 and 𝑏 where 𝑏 ≠ 0

• Output: the remainder after dividing 𝑎 by 𝑏 

• while (a >= b)
a := a – b;

 end-while

 return(a)

13



Collatz Sequence

• Example: Computing the next number in the Collatz sequence

• Name: nextCollatz

• Input: a positive integer 𝑛

• Output: 𝑛/2 if 𝑛 is even; otherwise 3𝑛 + 1

• if (remainder(n, 2) = 0)
n := n / 2

 else

n := (3 * n) + 1

 end-if

 return(n)
14



Collatz Sequence Length
• Example: Counting the number of steps for the Collatz sequence to 

converge to 1

• Name: sequenceLength

• Input: a positive integer starting point 𝑛

• Output: the number of steps required to get from 𝑛 to 1

• count := 0
 while (n > 1)

n := nextCollatz(n)

count := count + 1

 end-while

 return(count)
15

(See previous slide)


	Slide 1: Section 7.1 An Introduction to Algorithms
	Slide 2: Algorithm
	Slide 3: Algorithm
	Slide 4: Pseudocode
	Slide 5: Pseudocode
	Slide 6: Pseudocode
	Slide 7: Pseudocode
	Slide 8: Pseudocode
	Slide 9: Pseudocode
	Slide 10: Pseudocode
	Slide 11: Pseudocode
	Slide 12: Specifying an Algorithm
	Slide 13: Remainder Algorithm
	Slide 14: Collatz Sequence
	Slide 15: Collatz Sequence Length

