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Matrices

I Addition of two matrices A and B, denoted A + B, is defined
if A and B are of the same order.

I If it is defined, A + B is obtained by adding the same position
elements of A and B.

I
(

4 2 3
5 7 6
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+

(
1 8 9
3 5 4

)
=

(
4 + 1 2 + 8 3 + 9
5 + 3 7 + 5 6 + 4
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.
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is not defined.
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I Addition of two matrices A and B, denoted A + B, is defined
if A and B are of the same order.

I If it is defined, A + B is obtained by adding the same position
elements of A and B.

I
(

4 2 3
5 7 6

)
+

(
1 8 9
3 5 4

)
=

(
4 + 1 2 + 8 3 + 9
5 + 3 7 + 5 6 + 4

)
=(

5 10 12
8 12 10

)
.

I
(

4 2 3
5 7 6

)
+

(
1 8 9 2
3 5 4 9

)
is not defined.



Matrices

I Addition of two matrices A and B, denoted A + B, is defined
if A and B are of the same order.

I If it is defined, A + B is obtained by adding the same position
elements of A and B.

I
(

4 2 3
5 7 6

)
+

(
1 8 9
3 5 4

)
=

(
4 + 1 2 + 8 3 + 9
5 + 3 7 + 5 6 + 4

)
=(

5 10 12
8 12 10

)
.

I
(

4 2 3
5 7 6

)
+

(
1 8 9 2
3 5 4 9

)
is not defined.



Matrices

I The product of a scalar and a m × n matrix A is simply an
m × n matrix where each element in A is multiplied by the
scalar.

I 4 ·
(

3 2 5
6 1 7

)
=

(
4 · 3 4 · 2 4 · 5
4 · 6 4 · 1 4 · 7

)
=

(
12 8 20
24 4 28

)
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Matrices

I A dot product is a multiplication of a row vector of order
1× n with a column vector of order n × 1. The result is a
scalar.

I It is obtained by multiplying the ith element of the row vector
with the ith element of the column vector and then summing
these products.

I A =
(
a1a2 · · · an

)
,B =


b1
b2
...
bn


I A · B = a1b1 + a2b2 + · · ·+ anbn
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Matrices

I An example of dot product

I A =
(
1 2 3

)
,B =

4
5
6



I A · B = 1 ∗ 4 + 2 ∗ 5 + 3 ∗ 6 = 4 + 10 + 18 = 32
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Matrices
I Suppose A is an m × p matrix and B is a p × n matrix (note

the number of columns of A is the same as the number of
rows of B). Then the matrix multiplication A · B is defined.

I The result is an m × n matrix (resulting matrix has the same
number of rows as A and the same number of columns as B).

I The (i , j)th entry of the resulting matrix is the dot product of
row i of A and column j of B.

I Example:

I A =

(
a11 a12 a13 a14
a21 a22 a23 a24

)
,B =


b11 b12
b21 b22
b31 b32
b41 b42


I Multiplication is defined because the number of columns of A

is the same as the number of rows of B.
I Result will be a 2× 2 matrix.
I Entry in position (2, 1) in the resulting matrix will be the dot

product of the 2nd row in A with the 1st column of B:
a21b11 + a22b21 + a23b31 + a24b41.
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Example of Matrix Multiplication

I A =

(
1 2
3 4

)
,B =

1 2
3 4
5 6



I A ∗ B is not defined since A’s columns does not equal to B’s
rows.

I However, B ∗ A is defined and its result is 3× 2

I B ∗ A =

1 2
3 4
5 6

 ∗ (1 2
3 4

)
=

C11 C12

C21 C22

C31 C32

 =

 7 10
15 22
23 34


I C11 =

(
1 2

)
∗
(

1
3

)
= 1 ∗ 1 + 2 ∗ 3 = 7

I C12 =
(
1 2

)
∗
(

2
4

)
= 1 ∗ 2 + 2 ∗ 4 = 10

I C21 = 3 ∗ 1 + 4 ∗ 3 = 15, C22 = 3 ∗ 2 + 4 ∗ 4 = 22

I C31 = 5 ∗ 1 + 6 ∗ 3 = 23, C31 = 5 ∗ 2 + 6 ∗ 4 = 34
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