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Properties of the determinant of matrices after applying
elementary row operations:

I Let B be a matrix after swapping two rows of A. Then
|A| = −|B|.
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, |B| = 3 ∗ 2− 1 ∗ 4 = 2
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Properties of the determinant of matrices after applying
elementary row operations:
I Let B be a matrix after multiplying some row of A by a scalar

and then adding it onto another row of A. Then |A| = |B|.
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I Consider an equation of the form A · x = λ · x where A is an
n × n matrix of knowns, x is an n × 1 vector of unknowns,
and λ is an unknown scalar.

I Note that if x =

x1
...
xn

 then λ · x =

λ · x1...
λ · xn

.

I If the equation is satisfied for some vector x where x is not a
null vector, then x is an eigenvector and λ is an eigenvalue.
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I Exercise:
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2 0 −2
−1 2 3



I The eigenvalues are λ = 0 and λ = 2.

I When λ = 0,
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Eigenvalues and Eigenvectors

I The trace of an n × n matrix A, denoted tr(A), is the sum of
the values on the main diagonal of A.

I tr(A) = a11 + a22 + · · ·+ ann.
I The sum of the eigenvalues of A is equal to tr(A).

I A =

(
4 1
3 2

)
, tr(A) = 4 + 2 = 6, λ1 + λ2 = 1 + 5 = 6

I The product of the eigenvalues of A is equal to |A|.
I |A| = 4 ∗ 2− 3 ∗ 1 = 5, λ1 · λ2 = 1 · 5 = 5
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