CS 3333: Mathematical Foundations

Eigenvalues and Eigenvectors

 \triangleright Some properties of inverses:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

► Some properties of inverses:
\n
$$
A \cdot A^{-1} = A^{-1} \cdot A = I_n
$$
\n
$$
(A^{-1})^{-1} = A
$$

 \triangleright Some properties of inverses:

►
$$
A \cdot A^{-1} = A^{-1} \cdot A = I_n
$$

\n► $(A^{-1})^{-1} = A$
\n► $(k \cdot A)^{-1} = \frac{1}{k} \cdot A^{-1}$, where $k \neq 0$ is a scalar.

 \triangleright Some properties of inverses:

$$
\blacktriangleright A \cdot A^{-1} = A^{-1} \cdot A = I_n
$$

$$
\blacktriangleright (A^{-1})^{-1} = A
$$

$$
(k \cdot \hat{A})^{-1} = \frac{1}{k} \cdot A^{-1}
$$
, where $k \neq 0$ is a scalar.

$$
(A^t)^{-1} - (A^{-1})^t
$$

$$
\blacktriangleright (\mathcal{A}^t)^{-1} = (\mathcal{A}^{\kappa-1})^t
$$

I Some properties of inverses:

$$
\blacktriangleright A \cdot A^{-1} = A^{-1} \cdot A = I_n
$$

$$
\blacktriangleright (A^{-1})^{-1} = A
$$

$$
(k \cdot A)^{-1} = \frac{1}{k} \cdot A^{-1}
$$
, where $k \neq 0$ is a scalar.

$$
\blacktriangleright (\dot{A}^t)^{-1} = (A^{\stackrel{\kappa}{-1}})^t
$$

$$
(AB)^{-1} = B^{-1} \cdot A^{-1}
$$
 if A, B are non-singular $n \times n$ matrices

\triangleright Some properties of determinants: \blacktriangleright $|A| = |A^t|$

KO K K Ø K K E K K E K V K K K K K K K K K

\triangleright Some properties of determinants:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

|

$$
\begin{array}{c} \blacktriangleright \ \ |A| = |A^t| \\ \blacktriangleright \ \ |I_n| = 1 \end{array}
$$

\triangleright Some properties of determinants:

$$
\blacktriangleright |A| = |A^t|
$$

$$
\blacktriangleright |I_n|=1
$$

If A is diagonal, upper triangular, or lower triangular $n \times n$ matrix, then $|A| = a_{11}a_{22}\cdots a_{nn}$.

\triangleright Some properties of determinants:

- \blacktriangleright $|A| = |A^t|$
- \blacktriangleright $|I_n| = 1$
- If A is diagonal, upper triangular, or lower triangular $n \times n$ matrix, then $|A| = a_{11}a_{22}\cdots a_{nn}$.

KORKARYKERKER OQO

 $|A \cdot B| = |A| \cdot |B|$, if A and B are $n \times n$.

\triangleright Some properties of determinants:

$$
\blacktriangleright |A| = |A^t|
$$

$$
\blacktriangleright |I_n|=1
$$

If A is diagonal, upper triangular, or lower triangular $n \times n$ matrix, then $|A| = a_{11}a_{22}\cdots a_{nn}$.

$$
|A \cdot B| = |A| \cdot |B|
$$
, if A and B are $n \times n$.

$$
\blacktriangleright |k \cdot A| = k^n \cdot |A|
$$

\triangleright Some properties of determinants:

$$
\blacktriangleright |A| = |A^t|
$$

$$
\blacktriangleright |I_n|=1
$$

If A is diagonal, upper triangular, or lower triangular $n \times n$ matrix, then $|A| = a_{11}a_{22}\cdots a_{nn}$.

$$
|A \cdot B| = |A| \cdot |B|
$$
, if A and B are $n \times n$.

$$
|k \cdot A| = k^n \cdot |A|
$$

$$
|A^{-1}| = \frac{1}{|A|}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

 \blacktriangleright Let B be a matrix after swapping two rows of A. Then $|A| = -|B|$.

\n- Let *B* be a matrix after swapping two rows of *A*. Then
$$
|A| = -|B|
$$
.
\n- $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $|A| = 1 \times 4 - 3 \times 2 = -2$
\n- Get matrix *B* after swapping row 1 and row 2 in *A*.
\n- $B = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$, $|B| = 3 \times 2 - 1 \times 4 = 2$
\n

KO K K Ø K K E K K E K V K K K K K K K K K

Exect B be a matrix after multiplying a row of A by a scalar k . Then $|B| = k \cdot |A|$.

Exect B be a matrix after multiplying a row of A by a scalar k . Then $|B| = k \cdot |A|$.

$$
\blacktriangleright A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, |A| = 1 * 4 - 3 * 2 = -2
$$

Get matrix B after multiplying row 1 of A by 2.

$$
B = \begin{pmatrix} 2 & 4 \\ 3 & 4 \end{pmatrix}, |B| = 2 * 4 - 4 * 3 = -4
$$

 \blacktriangleright Let B be a matrix after multiplying some row of A by a scalar and then adding it onto another row of A. Then $|A| = |B|$.

$$
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, |A| = 1 * 4 - 3 * 2 = -2
$$

 \triangleright Get matrix B after multiplying row 1 of A by -3 and then adding it onto row 2 of A.

KORKARYKERKER OQO

$$
B = \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}, |B| = 1*(-2) - 0*2 = -2
$$

If Consider an equation of the form $A \cdot x = \lambda \cdot x$ where A is an $n \times n$ matrix of knowns, x is an $n \times 1$ vector of unknowns, and λ is an unknown scalar.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

If Consider an equation of the form $A \cdot x = \lambda \cdot x$ where A is an $n \times n$ matrix of knowns, x is an $n \times 1$ vector of unknowns, and λ is an unknown scalar.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\triangleright \text{ Note that if } x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ then } \lambda \cdot x = \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}.
$$

If Consider an equation of the form $A \cdot x = \lambda \cdot x$ where A is an $n \times n$ matrix of knowns, x is an $n \times 1$ vector of unknowns, and λ is an unknown scalar.

$$
\triangleright \text{ Note that if } x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ then } \lambda \cdot x = \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}.
$$

If the equation is satisfied for some vector x where x is not a null vector, then x is an eigenvector and λ is an eigenvalue.

KORKARYKERKER OQO

$$
\blacktriangleright A \cdot x = \lambda \cdot x \implies A \cdot x - \lambda \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

$$
\begin{array}{l}\n\blacktriangleright A \cdot x = \lambda \cdot x \implies A \cdot x - \lambda \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \\
\blacktriangleright A \cdot x - \lambda \cdot I \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}\n\end{array}
$$

$$
A \cdot x = \lambda \cdot x \implies A \cdot x - \lambda \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

$$
A \cdot x - \lambda \cdot I \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

$$
A \cdot (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

 \setminus

 $\Big\}$

$$
A \cdot x = \lambda \cdot x \implies A \cdot x - \lambda \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

$$
A \cdot x - \lambda \cdot I \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

$$
A \cdot (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

For non-null vectors x , we need to find λ such that $|A - \lambda \cdot I| = 0.$

$$
A \cdot x = \lambda \cdot x \implies A \cdot x - \lambda \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

\n
$$
A \cdot x - \lambda \cdot I \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

\n
$$
A \cdot (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

For non-null vectors x, we need to find λ **such that** $|A - \lambda \cdot I| = 0.$

 $|A - \lambda \cdot I| = 0$ is called the characteristic equation of A.

 \triangleright We want to find λ such that $|A - \lambda \cdot I| = 0$.

\n- We want to find
$$
\lambda
$$
 such that $|A - \lambda \cdot I| = 0$.
\n- Suppose $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.
\n

\n- We want to find
$$
\lambda
$$
 such that $|A - \lambda \cdot I| = 0$.
\n- Suppose $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.
\n- $\lambda \cdot I = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$
\n

\n- We want to find
$$
\lambda
$$
 such that $|A - \lambda \cdot I| = 0$.
\n- Suppose $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.
\n- $\lambda \cdot I = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$.
\n- Then $A - \lambda \cdot I = \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix}$.
\n

\n- We want to find
$$
\lambda
$$
 such that $|A - \lambda \cdot I| = 0$.
\n- Suppose $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.
\n- $\lambda \cdot I = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$.
\n- Then $A - \lambda \cdot I = \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix}$.
\n- Need to find λ such that $\begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = 0$.
\n

\blacktriangleright Example: Find the eigenvalues and eigenvectors of $A=\begin{pmatrix} 4 & 1 \ 3 & 2 \end{pmatrix}.$

 \blacktriangleright Example: Find the eigenvalues and eigenvectors of $A=\begin{pmatrix} 4 & 1 \ 3 & 2 \end{pmatrix}.$ $A - \lambda \cdot I = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 2 \end{pmatrix}$ 3 $2 - \lambda$ \setminus

KORK EXTERNE PROVIDE

 \blacktriangleright Example: Find the eigenvalues and eigenvectors of $A=\begin{pmatrix} 4 & 1 \ 3 & 2 \end{pmatrix}.$ $A - \lambda \cdot I = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 2 \end{pmatrix}$ 3 $2 - \lambda$ \setminus \blacktriangleright $4 - \lambda$ 1 3 $2 - \lambda$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $= 0$

KOD KAR KED KED E YOUN

 \blacktriangleright Example: Find the eigenvalues and eigenvectors of $A=\begin{pmatrix} 4 & 1 \ 3 & 2 \end{pmatrix}.$ $A - \lambda \cdot I = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 2 \end{pmatrix}$ 3 $2 - \lambda$ \setminus \blacktriangleright $4 - \lambda$ 1 3 $2 - \lambda$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $= 0$ \triangleright So, $(4 - \lambda)(2 - \lambda) - 3 = 0$

KOD KAR KED KED E YOUN

 \blacktriangleright Example: Find the eigenvalues and eigenvectors of $A=\begin{pmatrix} 4 & 1 \ 3 & 2 \end{pmatrix}.$ $A - \lambda \cdot I = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 2 \end{pmatrix}$ 3 $2 - \lambda$ \setminus \blacktriangleright $4 - \lambda$ 1 3 $2 - \lambda$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $= 0$ \triangleright So, $(4 - \lambda)(2 - \lambda) - 3 = 0$ **I** Then, $\lambda = 1$, 5.

KOD KAR KED KED E YOUN

• The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$

\n- The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$
\n- $A \cdot x = \lambda \cdot x \rightarrow (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$
\n- $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is the eigenvector.
\n

$$
f_{\rm{max}}(x)
$$

\n- The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$
\n- A $\cdot x = \lambda \cdot x \rightarrow (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$
\n- $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is the eigenvector.
\n- When $\lambda = 1$, $(A - I) \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 - 1 & 1 \\ 3 & 2 - 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
\n

\n- **b** The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$
\n- **c** $A \cdot x = \lambda \cdot x \rightarrow (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$
\n- **d** $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is the eigenvector.
\n- **e** When $\lambda = 1$, $(A - I) \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 - 1 & 1 \\ 3 & 2 - 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
\n- **b** So, $3x_1 + x_2 = 0$ and $3x_1 + x_2 = 0 \Rightarrow x_2 = -3x_1$.
\n

\n- **F** The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$
\n- **F** $A \cdot x = \lambda \cdot x \rightarrow (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$
\n- **F** $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is the eigenvector.
\n- **F** When $\lambda = 1$, $(A - I) \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 - 1 & 1 \\ 3 & 2 - 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
\n- **F** So, $3x_1 + x_2 = 0$ and $3x_1 + x_2 = 0 \Rightarrow x_2 = -3x_1$.
\n- **F** $x = \begin{pmatrix} x_1 \\ -3x_1 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ or $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$ or $\begin{pmatrix} \text{it it is not unique} \end{pmatrix}$
\n

The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$

\n
$$
A \cdot x = \lambda \cdot x \rightarrow (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

\n
$$
x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
$$
 is the eigenvector.

\nWhen $\lambda = 1$,

\n
$$
(A - I) \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 - 1 & 1 \\ 3 & 2 - 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

\n
$$
S_{0}, 3x_1 + x_2 = 0
$$
 and
$$
3x_1 + x_2 = 0 \Rightarrow x_2 = -3x_1
$$
.

\n
$$
x = \begin{pmatrix} x_1 \\ -3x_1 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}
$$
 or
$$
\begin{pmatrix} -1 \\ 3 \end{pmatrix}
$$
 or
$$
\begin{pmatrix} \text{it it is not unique} \\ -3 \end{pmatrix}
$$

\n
$$
A \cdot x = \lambda \cdot x \rightarrow \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}
$$

\n- The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$
\n- $A \cdot x = \lambda \cdot x \rightarrow (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$
\n- $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is the eigenvector.
\n- When $\lambda = 5$,
\n- $(A - 5 \cdot I) \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 - 5 & 1 \\ 3 & 2 - 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
\n

\n- **b** The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$
\n- **c** $A \cdot x = \lambda \cdot x \rightarrow (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$
\n- **d** $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is the eigenvector.
\n- **e** When $\lambda = 5$, $(A - 5 \cdot I) \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 - 5 & 1 \\ 3 & 2 - 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
\n- **b** So, $-x_1 + x_2 = 0$ and $3x_1 - 3x_2 = 0 \Rightarrow x_2 = x_1$.
\n

The eigenvalues of
$$
A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
$$
 are $\lambda = 1$ and $\lambda = 5$

\n
$$
A \cdot x = \lambda \cdot x \rightarrow (A - \lambda \cdot I) \cdot x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

\n
$$
x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
$$
 is the eigenvector.

\nWhen $\lambda = 5$,

\n
$$
(A - 5 \cdot I) \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 - 5 & 1 \\ 3 & 2 - 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

\n
$$
x_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$
 or
$$
\begin{pmatrix} -1 \\ -1 \end{pmatrix}
$$
 or
$$
\begin{pmatrix} 1 \\ -1 \end{pmatrix}
$$
 or
$$
\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}
$$

\n
$$
x = \lambda \cdot x \rightarrow \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}
$$

$$
\begin{array}{c}\n\blacktriangleright \text{ Exercise:} \\
\blacktriangleright \begin{pmatrix} 1 & 2 & 1 \\
2 & 0 & -2 \\
-1 & 2 & 3 \end{pmatrix}\n\end{array}
$$

 \blacktriangleright Exercise: \blacktriangleright $\sqrt{ }$ \mathcal{L} 1 2 1 2 0 -2 −1 2 3 \setminus $\overline{1}$ **I** The eigenvalues are $\lambda = 0$ and $\lambda = 2$. \blacktriangleright When $\lambda = 0$, $\sqrt{ }$ \mathcal{L} 1 −1 1 \setminus $\overline{1}$ \blacktriangleright When $\lambda = 2$, $\sqrt{ }$ \mathcal{L} 1 0 1 \setminus $\overline{1}$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 299

 \blacktriangleright The trace of an $n \times n$ matrix A, denoted tr(A), is the sum of the values on the main diagonal of A.

 \blacktriangleright The trace of an $n \times n$ matrix A, denoted tr(A), is the sum of the values on the main diagonal of A.

$$
\blacktriangleright \;\operatorname{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}.
$$

The trace of an $n \times n$ matrix A, denoted tr(A), is the sum of the values on the main diagonal of A.

$$
\blacktriangleright \text{ tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}.
$$

 \blacktriangleright The sum of the eigenvalues of A is equal to tr(A).

$$
\blacktriangleright A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}, \text{ } tr(A) = 4 + 2 = 6, \ \lambda_1 + \lambda_2 = 1 + 5 = 6
$$

The trace of an $n \times n$ matrix A, denoted tr(A), is the sum of the values on the main diagonal of A.

$$
\blacktriangleright \text{ tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}.
$$

 \blacktriangleright The sum of the eigenvalues of A is equal to tr(A).

$$
\blacktriangleright A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}, \text{ } tr(A) = 4 + 2 = 6, \ \lambda_1 + \lambda_2 = 1 + 5 = 6
$$

 \blacktriangleright The product of the eigenvalues of A is equal to |A|.

$$
|A| = 4 * 2 - 3 * 1 = 5, \ \lambda_1 \cdot \lambda_2 = 1 \cdot 5 = 5
$$