
Exercises such as this one help you develop your ability to reason about floatingpoint 
operations from a programmer’s perspective. Make sure you understand 
each of the answers. 
A. x == (int)(double) x 
Yes, since double has greater precision and range than int. 
B. x == (int)(float) x 
No. For example, when x is TMax. 
C. d == (double)(float) d 
No. For example, when d is 1e40, we will get +∞ on the right. 
D. f == (float)(double) f 
Yes, since double has greater precision and range than float. 
E. f == -(-f) 
Yes, since a floating-point number is negated by simply inverting its sign bit. 

F. 1.0/2 == 1/2.0 
Yes, the numerators and denominators will both be converted to floatingpoint 
representations before the division is performed. 
G. d*d >= 0.0 
Yes, although it may overflow to +∞. 
H. (f+d)-f == d 
No. For example, when f is 1.0e20 and d is 1.0, the expression f+d will be 
rounded to 1.0e20, and so the expression on the left-hand side will evaluate 
to 0.0, while the right-hand side will be 1.0. 


