1011 _{two}

$$(1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})_{ten}$$

= $(1 \times 8) + (0 \times 4) + (1 \times 2) + (1 \times 1)_{ten}$
= $8 + 0 + 2 + 1_{ten}$
= 11_{ten}

Converting to base ten.

1) What is 1110_{two} in base ten?

Answer

14

$$(1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)$$

 $= 8 + 4 + 2 + 0 = 14$

- 1) Of a doubleword's 64 bits, what is the leftmost bit numbered?
 - **O** 64
 - **●** 63
- 2) Given the following 64-bit number, what is the most significant bit's value?

Correct

The numbering of the rightmost bit starts with 0, so the leftmost bit is numbered with 63 rather than 64.

Correct

The leftmost bit is the most significant bit, meaning the bit with the greatest weight. Using the term "most significant bit" versus "leftmost bit" helps prevent confusion if a word is drawn vertically.

- 1) What is the largest base ten number representable in 4 bits (assuming the "natural" representation)?
 - O 8
 - **()** 15
 - **O** 16
- 2) What is the largest base ten number representable in 8 bits (assuming the "natural" representation)?
 - **()** 255
 - **O** 256
- 3) What is the largest base ten number approximately representable by 32 bits (assuming the "natural" representation)?
 - O 4 million
 - 4 billion
 - O 4 trillion
- 4) How is the largest base ten number representable by 64 bits calculated (assuming the "natural" representation)?
 - **O** 2⁶³ 1
 - O 2⁶⁴
 - **○** 2⁶⁴ 1

Correct

 $1111_{two}\ \text{is}\ 15_{ten}.$ The number can also be computed as 2^4 - 1.

~

~

~

~

Correct

 2^8 - 1 is 255. That largest number in base two is $11111111_{two}.$

Correct

2³² - 1 is 4,294,967,295, or just over 4 billion.

Correct

2⁶⁴ - 1 is approximately 18.5 quintillion.

1) Sign and magnitude representation and two's complement
representation are used about equally in modern computers.
O True

False

O Positive

Negative

- - O Positive

O Negative

•9,223,372,036,854,775,808

O -1

- 🖲 All O's
- O All 1's
- In a two's complement representation, the magnitude of the largest negative value is one greater than the magnitude of the largest positive number.
 - 🖲 True
 - O False

Correct

All computers use two's complement. Sign and magnitude representation was tried in early computers, but was difficult to implement efficiently in hardware, and the existence of both a positive and negative zero was problematic for programmers.

Correct

The leftmost bit is the sign bit. The 1 means negative.

Correct

The leftmost bit is the sign bit. The 0 means positive.

Correct

The leftmost bit is multiplied by -2^{63} , then added with the remaining bits that are multiplied by those bits' usual positive base values. Because those remaining bits are all 0's, the base ten value is just -9,223,372,036,854,775,808 + 0 = -9,223,372,036,854,775,808.

-9,223,372,030,654,775,606.

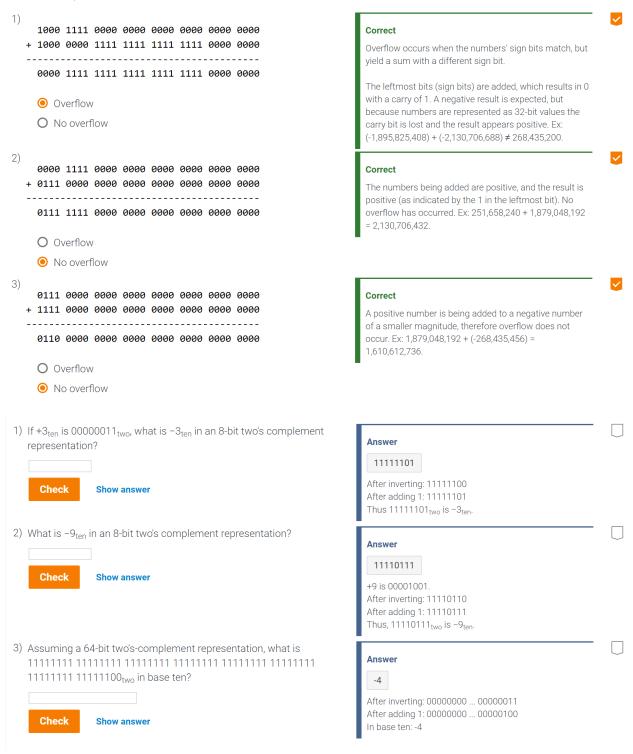
Correct

 0×-2^{64} + 0×2^{63} + 0×2^{62} ... = 0. All 1's actually represents -1: The first 1 is multiplied by -2^{63}, and the remaining 63 1's summed yields 2^{63} - 1, so the sum is -1.

Correct

Zero is one of the positive values, leaving one less value available for the other positives. Ex: For an 8-bit two's complement representation, the most negative value is -128 (1000000), while the most positive value is 127 (0111111).

_


~

 \checkmark

 \checkmark

 \checkmark

Indicate if the binary operation resulted in overflow. The numbers presented are 32-bit values; 64-bit values do not fit in the space, but the concepts are identical no matter the number of bits.

1) What is 0011 as a hexadecimal digit?

2) What is 1011 as a hexadecimal digit?

Show answer

3) What is 11110000 in 2-digit hexadecimal? Write answer as: a1

4) What is 2f in 8-bit binary?

Answer 3 Hexadecimal has symbols 0 - 9, so 0011 is just 3. Beyond 9, hexadecimal uses letters a - f. Answer b Hexadecimal uses symbols a - f for binary values 1010 -1111 (decimal values 10 - 15). a is 1010, b is 1011, etc. Answer fO 1111 is f. 0000 is 0. Together 11110000 is f0. Hexademical allows representing bits using fewer digits than binary. Answer 00101111 2 is 0010. f is 1111. Together the bits are 2f.

Hexademical allows representing bits using fewer digits than binary.