
Lecture 13

Topics: Hash Tables

Quiz - 2
30th April – 6:00 AM till End of day (11: 58 PM)

• Quiz -2 :
• Points: 5

• Date: 30th April

• Quiz availability Time: 6:00 AM till End of day (11: 58 PM)

• Number of MCQ: 7 (Each MCQ Points vary based on difficulty)

• Once the Quiz starts students will have 20 Min to complete it.

• The quiz cannot be paused or stopped. It must be attempted in one sitting

• Kindly do not refresh the page.

• One question will be visible at one time.

• Once you answer the question (i.e. submitted) it cannot be changed

• Note: Do keep a pencil, paper, and a calculator with you while attempting the quiz

Final Exam
7th May, 8:00 AM - 3:00 PM

• Final Exam: 7th May 2024 (From 8:00 AM to 3:00 PM)

• On Canvas -> Quizzes

• Points: 20

• Number of MCQ: Based on Points (most probably 20 – 22)

• Once the exam starts students will have 45 Min to complete it.

• The exam cannot be paused or stopped. It must be attempted in one sitting

• Kindly do not refresh or go back to the previous question (press back on the browser) as that is not allowed.

• Students with Accommodation approval from the UTSA S.D Office should email me before and after completing
their Exam so that they can be informed about the points and questions they need to attempt.

• Attempt the exam on time as the exam cannot be reopened once it is completed

• Do keep a pencil, paper, and a calculator with you while attempting the exam

Topics
1. Hashing

• Hash Table
• Hash Function

2. Insertion

3. Collusion Due To Insertion

4. Hash Function (Example)

5. Hash Function (Implementation)

6. Collusion Avoidance

7. Searching

8. Deletion

9. Brent’s Method

10. Hashing Case/Example

Hashing is a technique that is used to uniquely identify a specific object from a group of similar objects. Some
examples of how hashing is used in our lives include:

• In universities, each student is assigned a unique roll number (ABC123) that can be used to retrieve information
about them.

• In libraries, each book is assigned a unique number that can be used to determine information about the book,
such as its exact position in the library or the users it has been issued to etc.

In both these examples the students and books were hashed to a unique number.

A hash table, or a hash map, is a data structure that associates keys with values. The primary operation it supports
efficiently is a lookup: given a key (e.g. a person's name), find the corresponding value (e.g. that person's telephone
number).

Hashing
Definition/basic Idea

Hashing
Working

• In hashing, large keys are converted into small keys
by using hash functions.

• The values are then stored in a data structure
called hash table.

• The idea of hashing is to distribute entries (key/value
pairs) uniformly across an array.

• Each element is assigned a key (converted key).

• By using that key you can access the element
in O(1) time.

• Using the key, the algorithm (hash function)
computes an index that suggests where an entry can
be found or inserted.

• Assume that you have an object and you want to
assign a key to it to make searching easy.

• To store the key/value pair, you can use a simple
array like a data structure where keys (integers)
can be used directly as an index to store values.

• However, in cases where the keys are large and
cannot be used directly as an index, you should
use hashing.

Hashing
Applications

1. Hash tables are often used to implement associative arrays, sets and caches.

2. Like arrays, hash tables provide constant-time O(1) lookup on average, regardless of the number of items in the
table.

3. The (rare) worst-case lookup time in most hash table schemes is O(n).

4. Compared to other associative array data structures, hash tables are most useful when we need to store a large
numbers of data records.

5. Hash tables may be used as in-memory data structures. Hash tables may also be adopted for use with persistent
data structures; database indexes commonly use disk-based data structures based on hash tables.

6. Hash tables are also used to speed-up string searching in many implementations of data compression.

7. In computer chess, a hash table can be used to implement the transposition table.

Hashing
Applications (Randomization – Machine Learning) - Link

• Practical Considerations

• Make your data generation pipeline reproducible. Say you want to add a feature to see how it affects model
quality. For a fair experiment, your datasets should be identical except for this new feature. If your data
generation runs are not reproducible, you can't make these datasets.

• In that spirit, make sure any randomization in
data generation can be made deterministic:

1. Seed your random number generators (RNGs).
2. Use invariant hash keys.

https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/randomization

Hashing

• Hashing is implemented in two steps:

1. An element is converted into an integer by using a hash function. This element can be
used as an index to store the original element, which falls into the hash table.

2. The element is stored in the hash table where it can be quickly retrieved using hashed
key.

• hash = hashfunc(key)

• index = hash % array_size

• In this method, the hash is independent of the array size and it is then reduced to an index
(a number between 0 and array_size − 1) by using the modulo operator (%).

Hash Function

• A hash function is any function that can be used to map a data set of an arbitrary size to a data set of a fixed size,
which falls into the hash table. The values returned by a hash function are called hash values, hash codes, hash
sums, or simply hashes.

To achieve a good hashing mechanism, It is important to have a good hash function with the following basic
requirements:

1. Easy to compute: It should be easy to compute and must not become an algorithm in itself.

2. Uniform distribution: It should provide a uniform distribution across the hash table and should not result
in clustering.

3. Less collisions: Collisions occur when pairs of elements are mapped to the same hash value. These should
be avoided.

Note: Irrespective of how good a hash function is, collisions are bound to occur. Therefore, to maintain the
performance of a hash table, it is important to manage collisions through various collision resolution techniques.

Hash Table

• The simplest kind of hash table is an array of records.

• This example has 701 records.

[0] [1] [2] [3] [4] [5]

An array of records

. . .

[700]

Hash Table

• Each record has a special field, called its
key.

• In this example, the key is a long integer
field called Number.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

Number 506643548

Hash Table

• The number might be a person's
identification number, and the rest
of the record has information about
the person.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

Number 506643548

Hash Table

• When a hash table is being used as a dictionary, some of the array locations are in use, and
other spots are "empty", waiting for a new entry to come along.

• Often times, the empty spots are identified by a special key.

• For example, if all our identification numbers are positive, then we could use 0 as the
Number that indicates an empty spot.

• With this drawing, locations [0], [3], [6], and maybe some others would all have Number=0.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

Inserting a New Record

• In order to insert a new entry, the key of the entry
must somehow be converted to an index in the array.

• For our example, we must convert the key number
into an index between 0 and 700.

• The conversion process is called hashing and the index
is called the hash value of the key.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

Number 580625685

Inserting a New Record

• There are many ways to create hash values. Here is a
typical approach.

• Take the key mod 701 (which could be anywhere from
0 to 700).

• (Number mod 701) = (580,625,685 mod 701) ?

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

Number 580625685

3

Inserting a New Record

• The hash value is used for the location of
the new record.

Number 580625685

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

[3]

Inserting a New Record (Allocate the values)

Total 8 Values:
1. 36
2. 18
3. 72
4. 43
5. 6
6. 10
7. 5
8. 12

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Array

Hash key = key % table size

Collisions

• Here is another new record to insert, with a hash value of 2.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685

Number 701466868

My hash

value is [2].

Number 233667136

My hash

value is [2].

233667136 mod 701 = 2

701466868 mod 701 = 2

Collisions

• This is called a collision, because there is
already another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685

Number 701466868

When a collision

occurs,

move forward until you

find an empty spot.

Collisions

• This is called a collision, because there
is already another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

The new record goes

in the empty spot.

Need For A Good Hash Function

• Let us understand the need for a good hash function. Assume that you have to store strings in the hash table by
using the hashing technique {“abcdef”, “bcdefa”, “cdefab” , “defabc” }.

• To compute the index for storing the strings, use a hash function that states the following:

1. The index for a specific string will be equal to the sum of the ASCII values of the characters modulo 599.

Character ASCII

a 97

b 98

c 99

d 100

e 101

f 102

2. As 599 is a prime number, it will reduce the possibility of indexing different strings
(collisions).

I. It is recommended that you use *prime numbers in case of modulo.
II. The ASCII values of a, b, c, d, e, and f are 97, 98, 99, 100, 101, and 102 respectively.
III. Since all the strings contain the same characters with different permutations, the sum

will 599.

Prime numbers are famously only divisible by 1 and themselves. Thus, choosing to set your hash table length to a large prime number will greatly
reduce the occurrence of collisions.

Need For A Good Hash Function

• Let us understand the need for a good hash function. Assume that you have to store strings in the hash table by using the
hashing technique {“abcdef”, “bcdefa”, “cdefab” , “defabc” }.

• To compute the index for storing the strings, use a hash function that states the following:

1. The index for a specific string will be equal to the sum of the ASCII values of the characters modulo 599.

2. As 599 is a prime number, it will reduce the possibility of indexing different strings (collisions). It is recommended that
you use prime numbers in case of modulo. The ASCII values of a, b, c, d, e, and f are 97, 98, 99, 100, 101, and 102
respectively. Since all the strings contain the same characters with different permutations, the sum will 599.

3. The hash function will compute the same index for all the strings and the strings will be stored in the hash
table in the following format. As the index of all the strings is the same, you can create a list on that index
and insert all the strings in that list.

Here, it will take O(n) time (where n is the number of strings) to access a specific string. This shows that the hash function is not a good hash
function.

599 % 597 = 2

Need For A Good Hash Function

• Let’s try a different hash function.

• The index for a specific string will be equal to sum of ASCII values of characters
multiplied by their respective order in the string after which it is modulo with 2069
(prime number).

• String Hash function Index

• abcdef (97*1 + 98*2 + 99*3 + 100*4 + 101*5 + 102*6)%2069 38
97 + 196 + 297 + 400 + 505 + 612 = 2107 % 2069

• bcdefa (98*1 + 99*2 + 100*3 + 101*4 + 102*5 + 97*6)%2069 23

• cdefab (99*1 + 100*2 + 101*3 + 102*4 + 97*5 + 98*6)%2069 14

• defabc (100*1 + 101*2 + 102*3 + 97*4 + 98*5 + 99*6)%2069 11

Hashing Function (Example)

Key & Value

• (1,20)
• (2,70)
• (42,80)
• (4,25)
• (12,44)
• (14,32)
• (17,11)
• (13,78)
• (37,98)

Hashing Function (Example)

Hashing Function (Example)
Searching

Hashing Function (Implementation)

Note: This code will not be part of quiz or exam. It is only for implementation and understanding

Hashing Function (Implementation)

Del function: line 23

Note: This code will not be part of quiz or exam. It is only for implementation and understanding

Coalesced Hashing (Avoid Collisions)

• Chaining (concept):

• Store all elements that hash to the same slot in a linked list.

• Store a pointer to the head of the linked list in the hash table slot.

• Open Addressing (concept):

• All elements stored in hash table itself.

• When collisions occur, use a systematic (consistent) procedure to store
elements in free slots of the table.

k2

0

m–1

k1 k4

k5 k6

k7 k3

k8

• Coalesced hashing is a collision avoidance technique when there is a fixed sized data. It is a combination of both
Separate chaining and Open addressing.

• It uses the concept of Open Addressing(linear probing) to find first empty place for colliding element from the
bottom of the hash table and the concept of Separate Chaining to link the colliding elements to each other
through pointers.

Avoid Collisions

• Separate chaining (open hashing)

• Separate chaining is one of the most commonly used
collision resolution techniques.

• It is usually implemented using linked lists.

• In separate chaining, each element of the hash table is a
linked list.

• To store an element in the hash table you must insert it
into a specific linked list.

• If there is any collision (i.e. two different elements have
same hash value) then store both the elements in the
same linked list.

Avoid Collisions

• The simplest approach to resolve a collision is linear
probing.

• In this technique, if a value is already stored at a location
generated by hash(key), it means collision occurred then
we do a sequential search to find the empty location.

• Here the idea is to place a value in the next available
position.

5+1 = 6 (occupied)
6+1=0 (empty, place value)

Avoid Collisions

• Double hashing is similar to linear probing and the only difference is
the interval between successive probes.

• Here, the interval between probes is computed by using two hash
functions.

• Let us say that the hashed index for an entry record is an index that is
computed by one hashing function and the slot at that index is already
occupied.

• You must start traversing in a specific probing sequence to look for an
unoccupied slot.

• The probing sequence will be:

• index = hash_function_1(key) % Table_Size;

• index = hash_function_2(key) % Table_Size;

