
Section 13.1
Graphs
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The Königsberg Bridge Problem

• The city of Königsberg had seven 
bridges

• Is there a path through the city 
that crosses each bridge exactly 
once? 
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Undirected Graphs

• An  undirected graph 𝐺 = 𝑉, 𝐸  consists of a non-empty set of 
vertices (or nodes), 𝑉, and a set of edges, 𝐸

• Each edge in 𝐸 is an unordered pair of vertices in 𝑉

• Since edges are unordered pairs, edges do not have a direction

• Each edge can be described as a two-element set. The edge 𝑢, 𝑣  
is an undirected edge between vertices 𝑢 and 𝑣
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Undirected Graph Example

• Example: Let 𝐺 = 𝑉, 𝐸  where:

• 𝑉 = San Franciso, Los Angeles, Denver, Chicago, Detroit, Washington, New York

• 𝐸 contains the following edges:

• San Francisco, Los Angeles

• San Francisco, Denver

• Los Angeles, Denver

• Denver, Chicago  

• Chicago, Detroit

• Chicago, Washington

• Chicago, New York

• Detroit, New York
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Undirected Graph Example

• Example continued:
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Basic Terminology

• For the edge 𝑒 = 𝑢, 𝑣 , 𝑢 and 𝑣 are endpoints of 𝑒

• Two vertices 𝑢 and 𝑣 in an undirected graph 𝐺 are adjacent (or 
neighbors) if 𝑢 and 𝑣 are endpoints of an edge 𝑒 of 𝐺. Such an edge 𝑒 
is incident with the vertices 𝑢 and 𝑣 and connects 𝑢 and 𝑣.
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Basic Terminology

• It is possible for a graph to have two different edges between one pair 
of vertices. Such edges are called parallel edges. Two different edges 
are parallel if they connect the same two vertices.

• An undirected graph is simple if it has no parallel edges and it has no 
edges that connect a vertex to itself (self-loop)
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Basic Terminology

• The set of all neighbors of a vertex 𝑣 of 𝐺 = (𝑉, 𝐸), denoted 𝑁(𝑣), is 
called the neighborhood of 𝑣. 

• If 𝐴 is a subset of 𝑉, then 𝑁(𝐴) is the set of vertices of 𝐺 that are 
adjacent to at least one vertex in 𝐴

𝑁 𝐴 = ራ

𝑣∈𝐴

𝑁(𝑣)
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Basic Terminology

• The degree of a vertex in an undirected graph is the number of edges 
incident with it except that a loop at a vertex contributes twice to the 
degree of that vertex. The degree of vertex 𝑣 is denoted by deg 𝑣

• The total degree of an undirected graph is the sum of the degrees of 
its vertices
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Basic Terminology

• An undirected graph is regular if each of its vertices has the same 
degree

• An undirected graph is d-regular if all of its vertices have degree d

• Example: two different 3-regular graphs each with 8 vertices 
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Basic Terminology

• Example 1: What are the degrees and neighborhoods of each vertex 
in the following graph?
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Basic Terminology

• Example 1: What are the degrees and neighborhoods of each vertex 
in the following graph?
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deg(𝑎) = 2 𝑁(𝑎) = {𝑏, 𝑓}

deg(𝑏) = 4 𝑁(𝑏) = {𝑎, 𝑐, 𝑒, 𝑓}

deg(𝑐) = 4 𝑁(𝑐) = {𝑏, 𝑑, 𝑒, 𝑓}

deg(𝑑) = 1 𝑁(𝑑) = {𝑐}

deg(𝑒) = 3 𝑁(𝑒) = {𝑏, 𝑐, 𝑓}

deg(𝑓) = 4 𝑁(𝑓) = {𝑎, 𝑏, 𝑐, 𝑒}

deg(𝑔) = 0 𝑁(𝑔) = ∅



Basic Terminology

• Example 1 continued: What are the degrees and neighborhoods of 
each vertex in the following graph?

13



Basic Terminology

• Example 1 continued: What are the degrees and neighborhoods of 
each vertex in the following graph?

14

deg(𝑎) = 4 𝑁(𝑎) = {𝑏, 𝑑, 𝑒}

deg(𝑏) = 6 𝑁(𝑏) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

deg(𝑐) = 1 𝑁(𝑐) = {𝑏}

deg(𝑑) = 5 𝑁(𝑑) = {𝑎, 𝑏, 𝑒}

deg(𝑒) = 6 𝑁(𝑒) = {𝑎, 𝑏, 𝑑}



Basic Terminology

• A graph 𝐺 = (𝑉𝐺 , 𝐸𝐺) is a subgraph of 𝐻 = (𝑉𝐻 , 𝐸𝐻) if: a) 𝑉𝐺 ⊆ 𝑉𝐻 
and b) 𝐸𝐺 ⊆ 𝐸𝐻
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A graph and one of its sub graphs. What are 
some of its other subgraphs?



The Handshaking Theorem

•  Let 𝐺 = (𝑉, 𝐸) be an undirected graph with 𝑚 edges. Then

෍

𝑣∈𝑉

deg(𝑣) = 2𝑚
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

1.  Base case. The graph has 0 edges

෍

𝑣∈𝑉

deg(𝑣) = 0 = 2 ⋅ 0
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

• The deg(𝑣)  function returns the degree of a vertex 𝑣. Usually, the graph to which vertex 
𝑣 belongs is implied by context

• This proof refers to two graphs, 𝐺 and 𝐻. For clarity deg𝐺 𝑣  is the degree of 𝑣 in graph 
𝐺, and deg𝐻 𝑣  is the degree of 𝑣 in graph 𝐻
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

1. If an undirected graph has 𝑘 edges, then σ𝑣∈𝑉 deg(𝑣) = 2𝑘                       Induction hypothesis

2. A graph with 𝑘 + 1 edges has a subgraph with the same vertices and 𝑘 edges. Let 𝐺 = (𝑉𝐺 , 𝐸𝐺) denote the 
subgraph and 𝐻 = (𝑉𝐻 , 𝐸𝐻) denote the original graph. 𝑉𝐺 = 𝑉𝐻  and 𝐸𝐺 ⊂ 𝐸𝐻. Let 𝑒 be the 𝑘 + 1st edge: 
𝐸𝐺 ∪ {𝑒} = 𝐸𝐻

3. There are two cases for edge 𝑒. It either connects two different vertices or it connects a vertex to itself

4. Case 1: the 𝑘 + 1st edge of the graph connects two different vertices 𝑎 and 𝑏

5.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎,𝑏} deg𝐻(𝑣) + deg𝐻 𝑎 + deg𝐻(𝑏)

6.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎,𝑏} deg𝐻(𝑣) + deg𝐺 𝑎 + 1 + deg𝐺 𝑏 + 1

7.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎,𝑏} deg𝐺(𝑣) + deg𝐺 𝑎 + 1 + deg𝐺 𝑏 + 1

8.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉 deg𝐺(𝑣) + 2

9.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)
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The Handshaking Theorem
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The Handshaking Theorem
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The Handshaking Theorem
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9.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

1. If an undirected graph has 𝑘 edges, then σ𝑣∈𝑉 deg(𝑣) = 2𝑘                       Induction hypothesis

2. A graph with 𝑘 + 1 edges has a subgraph with the same vertices and 𝑘 edges. Let 𝐺 = (𝑉𝐺 , 𝐸𝐺) denote the 
subgraph and 𝐻 = (𝑉𝐻 , 𝐸𝐻) denote the original graph. 𝑉𝐺 = 𝑉𝐻  and 𝐸𝐺 ⊂ 𝐸𝐻. Let 𝑒 be the 𝑘 + 1st edge: 
𝐸𝐺 ∪ {𝑒} = 𝐸𝐻

3. There are two cases for edge 𝑒. It either connects two different vertices or it connects a vertex to itself

4. Case 1: the 𝑘 + 1st edge of the graph connects two different vertices 𝑎 and 𝑏

5.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎,𝑏} deg𝐻(𝑣) + deg𝐻 𝑎 + deg𝐻(𝑏)

6.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎,𝑏} deg𝐻(𝑣) + deg𝐺 𝑎 + 1 + deg𝐺 𝑏 + 1

7.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎,𝑏} deg𝐺(𝑣) + deg𝐺 𝑎 + 1 + deg𝐺 𝑏 + 1

8.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉 deg𝐺(𝑣) + 2

9.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

10. Case 2: the 𝑘 + 1st edge of the graph connects vertex 𝑎 to itself

11.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐻 𝑎

12.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐺 𝑎 + 2

13.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐺(𝑣) + deg𝐺 𝑎 + 2

14.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉 deg𝐺(𝑣) + 2

15.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)

16. In both cases, σ𝑣∈𝑉 deg𝐻(𝑣) = 2(𝑘 + 1)
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

10. Case 2: the 𝑘 + 1st edge of the graph connects vertex 𝑎 to itself

11.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐻 𝑎
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14.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉 deg𝐺(𝑣) + 2

15.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)

16. In both cases, σ𝑣∈𝑉 deg𝐻(𝑣) = 2(𝑘 + 1)
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

10. Case 2: the 𝑘 + 1st edge of the graph connects vertex 𝑎 to itself

11.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐻 𝑎

12.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐺 𝑎 + 2
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15.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)

16. In both cases, σ𝑣∈𝑉 deg𝐻(𝑣) = 2(𝑘 + 1)
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

10. Case 2: the 𝑘 + 1st edge of the graph connects vertex 𝑎 to itself

11.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐻 𝑎
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15.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)

16. In both cases, σ𝑣∈𝑉 deg𝐻(𝑣) = 2(𝑘 + 1)

32



The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

10. Case 2: the 𝑘 + 1st edge of the graph connects vertex 𝑎 to itself

11.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐻 𝑎
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14.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉 deg𝐺(𝑣) + 2

15.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)

16. In both cases, σ𝑣∈𝑉 deg𝐻(𝑣) = 2(𝑘 + 1)
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

10. Case 2: the 𝑘 + 1st edge of the graph connects vertex 𝑎 to itself

11.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐻 𝑎

12.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐺 𝑎 + 2
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14.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉 deg𝐺(𝑣) + 2

15.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)

16. In both cases, σ𝑣∈𝑉 deg𝐻(𝑣) = 2(𝑘 + 1)
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The Handshaking Theorem

• Proof by induction on the number of edges in the graph

2.  Induction step.

10. Case 2: the 𝑘 + 1st edge of the graph connects vertex 𝑎 to itself

11.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉−{𝑎} deg𝐻(𝑣) + deg𝐻 𝑎
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14.      σ𝑣∈𝑉 deg𝐻(𝑣) = σ𝑣∈𝑉 deg𝐺(𝑣) + 2

15.      σ𝑣∈𝑉 deg𝐻(𝑣) = 2𝑘 + 2 = 2(𝑘 + 1)

16. In both cases, σ𝑣∈𝑉 deg𝐻(𝑣) = 2(𝑘 + 1)
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Common Graphs

• Some types of graphs occur frequently in the study of graphs

• A cycle (when referring to a graph) has edges that form exactly one cycle (as a 
walk) using all of the vertices of the graph. 𝐶𝑛 denotes a cycle graph with 𝑛 
vertices. Note that it must be the case that 𝑛 ≥ 3
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Common Graphs

• An n-dimensional hypercube, Qn, has 2n vertices representing the possible 
binary strings of length n. There is an edge between two vertices if their 
corresponding binary strings are different in only 1 place.
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Common Graphs

• A complete graph has an edge between every pair of vertices. 𝐾𝑛 denotes a 
complete graph with 𝑛 vertices. 𝐾𝑛 is sometimes called a clique of size 𝑛 or an 
𝑛-clique

38



Common Graphs

• A complete bipartite graph 𝐺 = (𝑉, 𝐸)has a set if vertices that that can be 
divided into 2 nonempty sets 𝑉1 and 𝑉2 such that:

•  𝑉 = 𝑉1 ∪ 𝑉2

•  𝑉1 ∩ 𝑉2 = ∅

• 𝑎, 𝑏 ∈ 𝐸 whenever 𝑎 and 𝑏 are in different vertex subsets

• 𝑎, 𝑏 ∉ 𝐸 whenever 𝑎 and 𝑏 are in the same vertex subset

𝐾𝑚,𝑛 denotes a complete bipartite graph where one vertex subset has 𝑚 vertices and the 
other vertex subset has 𝑛 vertices
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Common Graphs

• Examples of complete bipartite graphs
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Common Graphs

• A complete bipartite graph is a special case of a bipartite graph. 𝐺 = 𝑉, 𝐸  is 
bipartite if it has a set if vertices that that can be divided into 2 nonempty sets 
𝑉1 and 𝑉2 such that:

•  𝑉 = 𝑉1 ∪ 𝑉2

•  𝑉1 ∩ 𝑉2 = ∅

• 𝑎, 𝑏 ∉ 𝐸 whenever 𝑎 and 𝑏 are in the same vertex subset
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• Example: Is the graph below bipartite?

Bipartite Graphs
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• Example: Is the graph below bipartite?

• Color vertex 𝑎 red

Bipartite Graphs
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• Example: Is the graph below bipartite?

• Color the vertices adjacent to 𝑎 blue

Bipartite Graphs

44



• Example: Is the graph below bipartite?

• Color the vertices adjacent to 𝑓 red

Bipartite Graphs
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• Example: Is the graph below bipartite?

• There are no edges that connect two red vertices or two  blue 
vertices, so the graph is bipartite

Bipartite Graphs
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• Another example: Is the graph below bipartite?

Bipartite Graphs
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• Another example: Is the graph below bipartite?

• Color vertex 𝑎 red

Bipartite Graphs
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• Another example : Is the graph below bipartite?

• Color the vertices adjacent to 𝑎 blue

Bipartite Graphs
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• Another example : Is the graph below bipartite?

• Color the vertices adjacent to 𝑓 red. This cannot be done, so the 
graph is not bipartite 

Bipartite Graphs
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• Theorem: A graph is bipartite if and only if it is possible to assign one 
of two different colors to each vertex so that no two adjacent vertices 
have the same color.

Bipartite Graphs
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• Theorem: A simple graph is bipartite if and only if it is possible to 
assign one of two different colors to each vertex so that no two 
adjacent vertices have the same color.

• Proof by proving each implication: 

a) If a simple graph is bipartite then, then its vertices can be colored with two 
different colors so that no edge connects two vertices of the same color

b) If the vertices of a simple graph can be colored with two different colors so 
that no edge connects vertices of the same color, then the graph is bipartite

Bipartite Graphs
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• Proof of Theorem 4 continued: 

Proof of a)

1. Assume that 𝐺 = (𝑉, 𝐸) is a bipartite simple graph.

2.  𝑉 = 𝑉1 ∪ 𝑉2, 𝑉1 ∩ 𝑉2 = ∅, and no edge in 𝐸 connects two vertices that are 
in 𝑉1 or two vertices that are in 𝑉2

3. If each vertex in 𝑉1 is colored red and each vertex in 𝑉2 is colored blue, then 
no edge in 𝐸 connects two vertices of the same color.

4. If 𝐺 = (𝑉, 𝐸) is a bipartite simple graph, then its vertices can be colored 
with two different colors such that no edge connects two vertices of the 
same color

Bipartite Graphs
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• Proof of Theorem 4 continued: 

Proof of a)

1. Assume that 𝐺 = (𝑉, 𝐸) is a bipartite simple graph.

2.  𝑉 = 𝑉1 ∪ 𝑉2, 𝑉1 ∩ 𝑉2 = ∅, and no edge in 𝐸 connects two vertices that are 
in 𝑉1 or two vertices that are in 𝑉2

3. If each vertex in 𝑉1 is colored red and each vertex in 𝑉2 is colored blue, then 
no edge in 𝐸 connects two vertices of the same color.

4. If 𝐺 = (𝑉, 𝐸) is a bipartite simple graph, then its vertices can be colored 
with two different colors such that no edge connects two vertices of the 
same color

Bipartite Graphs
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• Proof of Theorem 4 continued: 

Proof of a)

1. Assume that 𝐺 = (𝑉, 𝐸) is a bipartite simple graph.

2.  𝑉 = 𝑉1 ∪ 𝑉2, 𝑉1 ∩ 𝑉2 = ∅, and no edge in 𝐸 connects two vertices that are 
in 𝑉1 or two vertices that are in 𝑉2

3. If each vertex in 𝑉1 is colored red and each vertex in 𝑉2 is colored blue, then 
no edge in 𝐸 connects two vertices of the same color.

4. If 𝐺 = (𝑉, 𝐸) is a bipartite simple graph, then its vertices can be colored 
with two different colors such that no edge connects two vertices of the 
same color

Bipartite Graphs
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• Proof of Theorem 4 continued: 

Proof of a)

1. Assume that 𝐺 = (𝑉, 𝐸) is a bipartite simple graph.

2.  𝑉 = 𝑉1 ∪ 𝑉2, 𝑉1 ∩ 𝑉2 = ∅, and no edge in 𝐸 connects two vertices that are 
in 𝑉1 or two vertices that are in 𝑉2

3. If each vertex in 𝑉1 is colored red and each vertex in 𝑉2 is colored blue, then 
no edge in 𝐸 connects two vertices of the same color.

4. If 𝐺 = (𝑉, 𝐸) is a bipartite simple graph, then its vertices can be colored 
with two different colors such that no edge connects two vertices of the 
same color

Bipartite Graphs
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• Proof of Theorem 4 continued: 

Proof of b)

1. Assume 𝐺 = (𝑉, 𝐸) is a graph with no edges connecting the same vertex and 
whose vertices are colored with two different colors such that no edge connects 
two vertices of the same color. Without loss of generalization assume that the 
colors are red and blue.

2.  𝑉 = 𝑉𝑟𝑒𝑑 ∪ 𝑉𝑏𝑙𝑢𝑒 and 𝑉𝑟𝑒𝑑 ∩ 𝑉𝑏𝑙𝑢𝑒 = ∅ where the set of red vertices is 𝑉𝑟𝑒𝑑 and 
the set of blue vertices is 𝑉𝑏𝑙𝑢𝑒

3.  𝐺 = (𝑉, 𝐸) is bipartite since there is no edge that connects two vertices in 𝑉𝑟𝑒𝑑 or 
two vertices in 𝑉𝑏𝑙𝑢𝑒

4. If 𝐺 = (𝑉, 𝐸) is a graph whose vertices are colored with two different colors such 
that no edge connects two vertices of the same color, then 𝐺 is bipartite

Bipartite Graphs
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• Proof of Theorem 4 continued: 

Proof of b)

1. Assume 𝐺 = (𝑉, 𝐸) is a graph with no edges connecting the same vertex and 
whose vertices are colored with two different colors such that no edge connects 
two vertices of the same color. Without loss of generalization assume that the 
colors are red and blue.

2.  𝑉 = 𝑉𝑟𝑒𝑑 ∪ 𝑉𝑏𝑙𝑢𝑒 and 𝑉𝑟𝑒𝑑 ∩ 𝑉𝑏𝑙𝑢𝑒 = ∅ where the set of red vertices is 𝑉𝑟𝑒𝑑 and 
the set of blue vertices is 𝑉𝑏𝑙𝑢𝑒

3.  𝐺 = (𝑉, 𝐸) is bipartite since there is no edge that connects two vertices in 𝑉𝑟𝑒𝑑 or 
two vertices in 𝑉𝑏𝑙𝑢𝑒

4. If 𝐺 = (𝑉, 𝐸) is a graph whose vertices are colored with two different colors such 
that no edge connects two vertices of the same color, then 𝐺 is bipartite

Bipartite Graphs
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• Proof of Theorem 4 continued: 

Proof of b)

1. Assume 𝐺 = (𝑉, 𝐸) is a graph with no edges connecting the same vertex and 
whose vertices are colored with two different colors such that no edge connects 
two vertices of the same color. Without loss of generalization assume that the 
colors are red and blue.

2.  𝑉 = 𝑉𝑟𝑒𝑑 ∪ 𝑉𝑏𝑙𝑢𝑒 and 𝑉𝑟𝑒𝑑 ∩ 𝑉𝑏𝑙𝑢𝑒 = ∅ where the set of red vertices is 𝑉𝑟𝑒𝑑 and 
the set of blue vertices is 𝑉𝑏𝑙𝑢𝑒

3.  𝐺 = (𝑉, 𝐸) is bipartite since there is no edge that connects two vertices in 𝑉𝑟𝑒𝑑 or 
two vertices in 𝑉𝑏𝑙𝑢𝑒

4. If 𝐺 = (𝑉, 𝐸) is a graph whose vertices are colored with two different colors such 
that no edge connects two vertices of the same color, then 𝐺 is bipartite

Bipartite Graphs
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• Proof of Theorem 4 continued: 

Proof of b)

1. Assume 𝐺 = (𝑉, 𝐸) is a graph with no edges connecting the same vertex and 
whose vertices are colored with two different colors such that no edge connects 
two vertices of the same color. Without loss of generalization assume that the 
colors are red and blue.

2.  𝑉 = 𝑉𝑟𝑒𝑑 ∪ 𝑉𝑏𝑙𝑢𝑒 and 𝑉𝑟𝑒𝑑 ∩ 𝑉𝑏𝑙𝑢𝑒 = ∅ where the set of red vertices is 𝑉𝑟𝑒𝑑 and 
the set of blue vertices is 𝑉𝑏𝑙𝑢𝑒

3.  𝐺 = (𝑉, 𝐸) is bipartite since there is no edge that connects two vertices in 𝑉𝑟𝑒𝑑 or 
two vertices in 𝑉𝑏𝑙𝑢𝑒

4. If 𝐺 = (𝑉, 𝐸) is a graph whose vertices are colored with two different colors such 
that no edge connects two vertices of the same color, then 𝐺 is bipartite

Bipartite Graphs
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