
Lecture 2 (Part – I)

Topics: Time and Space Complexity, Runtimes, Sorting, Searching

CS 2124: Data Structures
Spring 2024

Topics

• Time and Space Complexity

• Introduction to Asymptotic Notations

• Big O notation

• Searching

• Binary Search

• Linear Search

• Assignment – 1
• Assigned: 22nd Jan 2024
• Due: 29th Jan 2024

Time and Space Complexity

• As a human we tend to improve/optimize or find efficient ways to perform a task.

• i.e. making a cup of tea/coffee or reaching university for a class in both case we try to improve the time and
effort require to complete the task.

• Time Complexity: Time take by an algorithm for execution.

• Technically, it is the process of determining how the processing (execution) time increases as the size of the
problem (input size) increase

• Generally the time complexity is expressed by keeping only the values which affects most.

• For example, if the time complexity for a program needs to be calculated as a function of n (i.e. n⁴+n³+n²+n ≈
n⁴) as all the terms are small and they add lesser (too less) effect in the overall computation when compared
with n⁴.

• i.e. The equation 5n⁴ + 10n³ + 100 + 100n has a time complexity of = ?

Time and Space Complexity

• As a human we tend to improve/optimize or find efficient ways to perform a task.

• i.e. making a cup of tea/coffee or reaching university for a class in both case we try to improve the time and
effort require to complete the task.

• Space Complexity: Memory require by an algorithm to execute a program.

• Space complexity is the total amount of memory space used by an algorithm/program including the space of
input values for execution.

Space Complexity = Auxiliary space (Auxiliary space is just a temporary or extra space) + Space use by input values

Time and Space complexity
Importance

• Importance of time and space complexity when it comes to programming.

• i.e. Air traffic controlling and monitoring program, Intrusion detection program (IDS), fire alarm etc.

Air Traffic Controller Radar

Data Structures
Time and Space complexity

• Data Structures are necessary for designing efficient algorithms.

• It provides reusability and abstraction.

• Using appropriate data structures can help programmers save a good amount of time while
performing operations such as storage, retrieval, or processing of data.

• Helps in optimizing data manipulation (i.e. add, remove, edit large amounts of data).

Introduction to Asymptotic Notations

• In simple words, it tells us how good an algorithm is when compared with another algorithm.

• Parameters can play a part i.e. hardware used for implementation, Operating System, CPU model, processor
generation, etc.

• Therefore, we use Asymptotic analysis to compare space and time complexity.

• It analyzes two algorithms based on changes in their performance concerning the increment or decrement in
the input size

Asymptotic = Approaching a value or curve arbitrarily closely (i.e. as some sort of limit is taken)

• Big O (O()) describes the upper bound of the complexity.
• Omega (Ω()) describes the lower bound of the complexity.
• Theta (Θ()) describes the exact bound of the complexity.

Introduction to Asymptotic Notations

• Run time usually depends on the size of the input

𝑻 𝒏 : 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑜𝑛 𝑎𝑛 𝑖𝑚𝑝𝑢𝑡 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛.

• Asymptotic analysis consider the growth of 𝑇 𝑛 as n goes to infinity.

Introduction to Asymptotic Notations

• Big O is also known as the algorithm's upper bound since it analyses the worst-case
situation.

• The best-case scenario are not considered to be used in a comparative analysis. That’s why
we employ worst-case scenarios to get meaningful input.

• The algorithm in data structure while programming code is critical. Big O notation makes it
easier to compare the performance of different algorithms and figure out which one is best
for your code.

Big O notation

• The big O notation, 𝑶(𝒈 𝒏), is a collection of functions.

• A function 𝒇 𝒏 is a member of that collection only if it fits the following criteria:

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒄 𝒂𝒏𝒅 𝒏𝟎 𝒆𝒙𝒊𝒔𝒕 𝒘𝒉𝒆𝒓𝒆 𝒇 𝒏 ≤ 𝒄. 𝒈 𝒏 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 ≥ 𝒏𝟎

• So, when an algorithm performs a computation on each item in an array of size 𝒏, it takes 𝑶 𝒏 time and
performs 𝑶 𝟏 work on each item

• This can be written as:

𝒇(𝒏) = 𝑶(𝒈(𝒏)), where 𝒏 tends to infinity (𝒏→∞)

• We can simply write the above expression as:

𝒇(𝒏)=𝑶(𝒈(𝒏))

Later we will look in to some examples to make it clear

But why do we need Big O?

• The world we live in today consists of complicated apps and software, each running on
various devices and each having different capabilities.

• Some devices like desktops can run heavy machine learning software, but others like phones
can only run apps.

• So when you create an application, you’ll need to optimize your code so that it runs
smoothly across devices to give you an edge over your competitors.

• As a result, programmers should inspect and evaluate their code thoroughly.

Big O notation (Steps)

• The Big-O Asymptotic Notation gives us the Upper Bound Idea. The general step wise procedure for Big-O
runtime analysis is as follows:

1. Figure out what the input is and what ‘n’ represents (i.e. 𝒇(𝒏)=𝑶(𝒈(𝒏)).

2. Then identify the maximum number of operations, the algorithm performs in terms of ‘n’. (i.e. An addition
of two numbers is just 1 operation)

3. Eliminate all excluding the highest order terms. (i.e. if you have n⁴ and n³ consider only n⁴)

4. Remove all the constant factors. As constants will remain constant regardless of the user input

• Basically, this asymptotic notation is used to measure and compare the worst-case scenarios of algorithms
theoretically. For any algorithm, the Big-O analysis should be straightforward as long as we correctly identify the
operations that are dependent on ‘n’, the input size.

• In general cases, we mainly consider the worst-case (theoretical running time complexities) of algorithms for
the performance analysis.

Big O notation Example

Constant:O(c) O(1)

Logarithmic time: O(log n) n=20, means log (20) = 2.996

Linear time: O(n) n=20, means 20

Logarithmic time: O(n log n) n=20, means 20 log(20) = 59.9

Quadratic time: O(𝑛2) n=20 mean, 202 = 400

Exponential time: O(2𝑛) n=20 means, 220 = 1084576

Factorial time: O(n!) n=20 means, 20!

Time/Complexity

Size of Input

Big O notation (Example)

Line Count

Line 5: 1

Line 6: 1

Line 7: 1

Line 8: 1

Line 9: 1+(n+1)+n

Line 10: n+1

Ignore constant multiplier so O(n)Output ?

Big O = ?

Big O notation

This function runs in 𝑶(𝟏) time (or "constant time") relative to its input. The input array could be 1 item or
1,000 items, but this function would still just require one step.

This function runs in 𝑶(𝒏) time (or "linear time"),
where n is the number of items in the array (i. e 𝑶(𝟓)).

Try to implement the code

Big O notation

Here we're nesting two loops. If our array has n items, our outer loop runs n times and our inner loop runs n times
for each iteration of the outer loop, giving us 𝒏𝟐 total prints. Thus this function runs in 𝑶(𝒏𝟐) time (or "quadratic
time")

Try to implement the code

Big O notation

Exponential time: 𝑶(𝟐𝒏)

• Recursive calculation of Fibonacci numbers.
𝑶(𝟐𝒏) denotes an algorithm whose growth
doubles with each addition to the input data
set.

• The growth curve of an 𝑶(𝟐𝒏) function is
exponential.

• It starts off very shallow, then rising
exponentially.

• What will be the output if input is 3?

Big O notation

When you're calculating the big O complexity of something,
you just throw out the constants:
𝑶(𝟐𝒏) = 𝑶(𝒏)

Try to implement the code

Big O notation

As the program is following
n/2 (i.e. n is the input)

Logarithmic time: 𝑶(𝒍𝒐𝒈𝟐 𝒏)

Try to implement the code

Searching

• Searching in data structure refers to the process of finding location of an element in a list.

• This is one of the important parts of many data structures algorithms, as one operation can be performed on
an element if and only if we find it.

• We do not want searching to take ‘n’ steps for searching an array of ‘n’ number of elements.

• In some cases we are bound to take ‘n’ steps

• But different algorithms try to minimize the number of steps to search an element

• Why optimize searching algorithms ?

Images Source: Link

https://www.demandsage.com/website-statistics/

Binary Search

• In the sequential search, when we compare against the first item, there are at most more items to look through
if the first item is not what we are looking for.

• Instead of searching the list in sequence, a binary search will start by examining the middle item.

• If that item is the one we are searching for, we are done.

• If it is not the correct item, we can use the ordered nature of the list to eliminate half of the remaining
items.

• If the item we are searching for is greater than the middle item, we know that the entire lower half of the
list as well as the middle item can be eliminated from further consideration.

• The item, if it is in the list, must be in the upper half.

Search = 7
Sorted Array

Mid Value = 6
6 < 7

Search the Right side

Mid Value = 8
7 < 8

Search the Left side

Binary Search

Algorithm
1. binarySearch(arr, x, low, high)
2. repeat till low = high
3. mid = (low + high)/2
4. if (x == arr[mid])
5. return mid
6. else if (x > arr[mid]) // x is on the right side
7. low = mid + 1
8. else // x is on the left side
9. high = mid - 1

Important: For Binary search, array must be sorted

Iterative Approach:

Pseudocode
1. Set two variables. min = 0 and max = n - 1.
2. Find the mid value between min and max by averaging

min and max and rounding it down.
3. If array[mid] === target, return mid.
4. If array[mid] < target, set min = mid + 1.
5. Otherwise set max = mid - 1.
6. Go back to step 2.

Double the size of the array, need at most one more guess.

Binary Search

Binary Search (For better understanding)

Index Value Element at that index value

Linear Search

• Linear Search (sequential search) algorithm starts at one end and goes through each
element of a list until the desired element is found, otherwise the search continues till the
end of the data set.

Search = 7
3 ≠ 7 4 ≠ 7

5 ≠ 7 6 ≠ 7 7

Linear search do not require the elements to be sorted

Linear Search

1. linear_search (list, value)

2. for each item in the list

3. if match item == value

4. return the item's location

5. end if

6. end for

7. end procedure

Check if there is any element or not

Linear Search

End of Lecture 2 (Part – I)
Do try to implement the codes by your self to better

understand the working

• Assignment – 1 (Plagiarism check is enable on the canvas)
• Assigned: 22nd Jan
• Due: 29th Jan (End of day as per Canvas)

