RSA Implementation:

RSA is a complex topic, but the algorithm for implementing it is relatively simple. Especially compared
to the exhaustiveness of verifying and understanding its properties.

To determine your key pairs:

1. Find two primes (p & q) randomly, defining ‘n’ as n = p*q

2. Define @(n) = (p-1) * (g-1)

3. Choose e at random, but such that e<@(n), and e & ¢(n) are coprime (they share no common
factors, i.e: GCD(e, ¢(n)) =1)
Define d as the Modular Multiplicative Inverse of e mod ¢(n), such that e*d = 1 (mod @(n) )
Publicise (e, n) as the public key, keep (d, n) as your private key.
(Discard @(n), p, 9)

For use of the created keys, both ends of RSA(encryption and decryption) are forms of modular
exponentiation, either ‘m® mod n = ¢’ or ‘c® mod n = m’, which are both very similar.

(Note that ‘n’ is used in both processes, while ‘e’ and ‘d’ are exclusive and inverses of each other)
Encryption:

Given: ‘m’(an integer), (e, n) (the public key of the pair)

Return: ‘c’, a ciphered integer defined as ¢ = (m®) mod n

Decryption:
Given: ‘c’(a ciphered integer formed from the public key), (d, n) (the private key of the pair)
Return: ‘m’,

Your task is to implement those properties into a cohesive C program that performs RSA encryption.

1) Implement recursive gcd function

2) Implement Inverse Module function

3) Implement generateKeys function

4) Implement encrypt and decrypt function

SUBMIT: YOUR CODE AND Check if your code producing the encrypted and decrypted message
for the numbers below: p=3, q =11 and e =7



