CS 3333: Mathematical Foundations

Matrices

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

- \triangleright A matrix is a rectangular array of numbers organized in rows and columns.
- If a matrix A has m rows and n columns, then we say that A is an $m \times n$ matrix.

KO K K Ø K K E K K E K V K K K K K K K K K

- \triangleright A matrix is a rectangular array of numbers organized in rows and columns.
- If a matrix A has m rows and n columns, then we say that A is an $m \times n$ matrix.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

$$
A = \begin{pmatrix} 0 & -1 & 5 & 2 \\ 7 & 2 & -20 & 100 \end{pmatrix}
$$
 is a 2 × 4 matrix (or A is of order
2 × 4).

K ロ K K d K K B K K B K X B K Y Q Q Q

$$
A = \begin{pmatrix} 0 & -1 & 5 & 2 \\ 7 & 2 & -20 & 100 \end{pmatrix}
$$
 is a 2 × 4 matrix (or A is of order
2 × 4).

Note that a 2 \times 4 matrix is not the same as a 4 \times 2 matrix.

In general, a matrix A of the order $m \times n$ means:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

In general, a matrix A of the order $m \times n$ means: \blacktriangleright $A =$ $\sqrt{ }$ $\overline{}$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} a_{m1} a_{m2} \cdots a_{mn} \setminus $\Bigg\}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

In general, a matrix A of the order $m \times n$ means: \blacktriangleright $A =$ $\sqrt{ }$ $\overline{}$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} a_{m1} a_{m2} \cdots a_{mn} \setminus $\Bigg\}$ \triangleright a_{ij} is the element of A in row *i* and column *j*.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

In general, a matrix A of the order $m \times n$ means: \blacktriangleright $A =$ $\sqrt{ }$ $\overline{}$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} a_{m1} a_{m2} \cdots a_{mn} \setminus $\Bigg\}$ \triangleright a_{ij} is the element of A in row *i* and column *j*. row *i* is the elements $a_{i1}a_{i2}\cdots a_{in}$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

In general, a matrix A of the order $m \times n$ means: \blacktriangleright $A =$ $\sqrt{ }$ $\overline{}$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} a_{m1} a_{m2} \cdots a_{mn} \setminus $\Bigg\}$ \triangleright a_{ij} is the element of A in row *i* and column *j*. row *i* is the elements $a_{i1}a_{i2}\cdots a_{in}$. **• column** *j* is the elements $a_{1j}a_{2j}\cdots a_{mj}$.

KORKARYKERKER POLO

If a matrix has only one row, then it is a row vector.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

If a matrix has only one row, then it is a row vector.

KO K K Ø K K E K K E K V K K K K K K K K K

Example: $(1 \ 10 \ 11 \ 12 \ 7)$

If a matrix has only one row, then it is a row vector.

Example: $(1 \ 10 \ 11 \ 12 \ 7)$

If a matrix has only one column, then it is a column vector.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

If a matrix has only one row, then it is a row vector. Example: $(1 \ 10 \ 11 \ 12 \ 7)$ If a matrix has only one column, then it is a **column vector**. \blacktriangleright Example: $\sqrt{ }$ $\overline{}$ 7 −2 5 11 \setminus $\overline{}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

A 1×1 matrix is called a scalar.

A 1×1 matrix is called a scalar.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Example: (7)

A 1×1 matrix is called a scalar.

Example: (7)

 \triangleright A matrix that has 0 for all of its entries is a **null matrix**.

Kロトメ部トメミトメミト ミニのQC

A 1×1 matrix is called a scalar.

Example: (7)

 \triangleright A matrix that has 0 for all of its entries is a **null matrix**.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \blacktriangleright Example: $\sqrt{ }$ $\overline{ }$ $0 \cdots 0$ $0 \cdots 0$ \setminus $\Big\}$

 \blacktriangleright A 1 \times 1 matrix is called a scalar.

Example: (7)

 \triangleright A matrix that has 0 for all of its entries is a **null matrix**. \setminus

 $\Big\}$

 \blacktriangleright Example: $\sqrt{ }$ $\overline{ }$ $0 \cdots 0$ $0 \cdots 0$

 \blacktriangleright If a matrix has the same number of rows as columns, then the matrix is said to be a **square matrix**.

KORKARYKERKER POLO

 \blacktriangleright A 1 \times 1 matrix is called a scalar.

Example: (7)

 \triangleright A matrix that has 0 for all of its entries is a **null matrix**. \setminus

 $\Big\}$

 \blacktriangleright Example: $\sqrt{ }$ $\overline{ }$ $0 \cdots 0$ $0 \cdots 0$

- \blacktriangleright If a matrix has the same number of rows as columns, then the matrix is said to be a **square matrix**.
	- In other words, if a matrix is $n \times n$ for some integer $n > 0$, then it is a square matrix.

KORKARYKERKER POLO

 \blacktriangleright The main diagonal of a matrix consists of the elements whose row and column indices are the same.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

KO K K Ø K K E K K E K V K K K K K K K K K

 \blacktriangleright

 \blacktriangleright The main diagonal of a matrix consists of the elements whose row and column indices are the same.

 $\sqrt{ }$ $\overline{}$ a₁₁ a₁₂ a₁₃ a₁₄ a₂₁ a₂₂ a₂₃ a₂₄ a_{31} a_{32} a_{33} a_{34} a_{41} a_{42} a_{43} a_{44} \setminus $\Big\}$

 \blacktriangleright The main diagonal is defined for both square and non-square matrices. However it is more interesting and more commonly used in the case of square matrices.

 \blacktriangleright The identity matrix is a square matrix that has 1s on the main diagonal and 0s everywhere else.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright The identity matrix is a square matrix that has 1s on the main diagonal and 0s everywhere else.

An identity matrix of order $n \times n$ is denoted I_n .

 \blacktriangleright The identity matrix is a square matrix that has 1s on the main diagonal and 0s everywhere else.

An identity matrix of order $n \times n$ is denoted I_n .

$$
\blacktriangleright \text{ Example: } I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

 \triangleright A diagonal matrix is a square matrix such that every element that is not on the main diagonal is 0 (elements on the main diagonal can be 0 or non-zero).

 \triangleright A diagonal matrix is a square matrix such that every element that is not on the main diagonal is 0 (elements on the main diagonal can be 0 or non-zero).

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A $n \times n$ diagonal matrix is denoted by D_n .

 \triangleright A diagonal matrix is a square matrix such that every element that is not on the main diagonal is 0 (elements on the main diagonal can be 0 or non-zero).

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A $n \times n$ diagonal matrix is denoted by D_n .

$$
\blacktriangleright \text{ Example: } D_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{pmatrix}
$$

 \triangleright A diagonal matrix is a square matrix such that every element that is not on the main diagonal is 0 (elements on the main diagonal can be 0 or non-zero).

A $n \times n$ diagonal matrix is denoted by D_n .

$$
\begin{array}{ll}\n\blacktriangleright \text{ Example:} & D_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{pmatrix} \\
\blacktriangleright \text{ Example:} & D_3 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}\n\end{array}
$$

 \triangleright A lower triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and below the main diagonal.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright A lower triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and below the main diagonal.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A lower triangular matrix of order $n \times n$ is denoted L_n .

 \triangleright A lower triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and below the main diagonal.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A lower triangular matrix of order $n \times n$ is denoted L_n .

$$
\blacktriangleright \text{ Example: } L_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 1 & -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 \\ 1 & 4 & 6 & 3 & 5 \end{pmatrix}
$$

 \triangleright A lower triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and below the main diagonal.

A lower triangular matrix of order $n \times n$ is denoted L_n .

$$
\blacktriangleright \text{ Example: } L_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 1 & -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 \\ 1 & 4 & 6 & 3 & 5 \end{pmatrix}
$$

 \triangleright An upper triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and above the main diagonal.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \triangleright A lower triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and below the main diagonal.
- A lower triangular matrix of order $n \times n$ is denoted L_n .

$$
\blacktriangleright \text{ Example: } L_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 1 & -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 \\ 1 & 4 & 6 & 3 & 5 \end{pmatrix}
$$

 \triangleright An upper triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and above the main diagonal.

An upper triangular matrix of order $n \times n$ is denoted U_n .

 \triangleright A lower triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and below the main diagonal.

A lower triangular matrix of order $n \times n$ is denoted L_n .

$$
\blacktriangleright \text{ Example: } L_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 1 & -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 \\ 1 & 4 & 6 & 3 & 5 \end{pmatrix}
$$

 \triangleright An upper triangular matrix is a square matrix that may only have nonzero entries on the main diagonal and above the main diagonal.

An upper triangular matrix of order $n \times n$ is denoted U_n .

$$
\blacktriangleright \text{ Example: } U_5 = \begin{pmatrix} 2 & 0 & 1 & 2 & 3 \\ 0 & -7 & 0 & 1 & 1 \\ 0 & 0 & 5 & 0 & 2 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
$$
\triangleright A Boolean or binary matrix is a matrix that has only 1s or 0s as its entries.

KO K K Ø K K E K K E K V K K K K K K K K K

 \triangleright A Boolean or binary matrix is a matrix that has only 1s or 0s as its entries.

$$
\triangleright \text{ Example: } \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}
$$

 \triangleright A row or right stochastic matrix is a square matrix with nonnegative entries ≤ 1 such that the sum of the entries in each row is exactly 1.

 \triangleright A Boolean or binary matrix is a matrix that has only 1s or 0s as its entries.

$$
\triangleright \text{ Example: } \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}
$$

 \triangleright A row or right stochastic matrix is a square matrix with nonnegative entries ≤ 1 such that the sum of the entries in each row is exactly 1.

$$
\triangleright \text{ Example: } \begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.7 & 0.3 & 0 \\ 0 & 0.5 & 0.5 \end{pmatrix}
$$

 \triangleright One application of matrices is the adjacency matrix of a graph.

 \triangleright One application of matrices is the adjacency matrix of a graph.

 \triangleright Another application of matrices is to represent a system of linear equations.

Another application of matrices is to represent a system of linear equations.

KO K K Ø K K E K K E K V K K K K K K K K K

 \triangleright For example, suppose we were dealing with the following linear equations:

Another application of matrices is to represent a system of linear equations.

KO K K Ø K K E K K E K V K K K K K K K K K

 \triangleright For example, suppose we were dealing with the following linear equations:

$$
\blacktriangleright 3x_1 + 4x_2 = 7
$$

$$
-2x_1 + 7x_3 = 9
$$

$$
2x_1 + 3x_2 + 5x_3 = 20
$$

- \triangleright Another application of matrices is to represent a system of linear equations.
- \triangleright For example, suppose we were dealing with the following linear equations:

$$
\blacktriangleright 3x_1 + 4x_2 = 7
$$

$$
-2x_1 + 7x_3 = 9
$$

 $2x_1 + 3x_2 + 5x_3 = 20$

 \triangleright We can represent these equations in the following way:

- \triangleright Another application of matrices is to represent a system of linear equations.
- \blacktriangleright For example, suppose we were dealing with the following linear equations:

$$
3x_1 + 4x_2 = 7
$$

$$
-2x_1 + 7x_3 = 9
$$

$$
2x_1 + 3x_2 + 5x_3 = 20
$$

 \triangleright We can represent these equations in the following way:

$$
\blacktriangleright \begin{pmatrix} 3 & 4 & 0 \\ -2 & 0 & 7 \\ 2 & 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 9 \\ 20 \end{pmatrix}
$$

In Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{p \times q}$ be two matrices.

KOK KØK KEK KEK I EL 1990

\n- Let
$$
A = (a_{ij})_{m \times n}
$$
 and $B = (b_{ij})_{p \times q}$ be two matrices.
\n- $A = B$ if and only if
\n

K ロ K K d K K B K K B K X B K Y Q Q Q

Let
$$
A = (a_{ij})_{m \times n}
$$
 and $B = (b_{ij})_{p \times q}$ be two matrices.
\n $A = B$ if and only if

1. A and B are of the same order; that is, $m = p$ and $n = q$.

KOKK@KKEKKEK E 1990

\n- Let
$$
A = (a_{ij})_{m \times n}
$$
 and $B = (b_{ij})_{p \times q}$ be two matrices.
\n- A = B if and only if\n
	\n- 1. A and B are of the same order; that is, $m = p$ and $n = q$.
	\n- 2. $a_{i,j} = b_{i,j}, 1 \leq i \leq m, 1 \leq j \leq n$
	\n\n
\n

K ロ K K d K K B K K B K X B K Y Q Q Q

In Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{p \times q}$ be two matrices. $A = B$ if and only if 1. A and B are of the same order; that is, $m = p$ and $n = q$. 2. $a_{i,j}=b_{i,j}, 1\leq i\leq m, 1\leq j\leq n$ \blacktriangleright Examples:

KORKARYKERKER POLO

\n- Let
$$
A = (a_{ij})_{m \times n}
$$
 and $B = (b_{ij})_{p \times q}$ be two matrices.
\n- A = B if and only if\n
	\n- 1. A and B are of the same order; that is, $m = p$ and $n = q$.
	\n- 2. $a_{i,j} = b_{i,j}, 1 \leq i \leq m, 1 \leq j \leq n$
	\n\n
\n- Examples:
\n

K ロ K K d K K B K K B K X B K Y Q Q Q

$$
\blacktriangleright \begin{pmatrix} 3 & 2 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 5 & 6 \end{pmatrix}
$$

\n- Let
$$
A = (a_{ij})_{m \times n}
$$
 and $B = (b_{ij})_{p \times q}$ be two matrices.
\n- A = B if and only if\n
	\n- 1. A and B are of the same order; that is, $m = p$ and $n = q$.
	\n- 2. $a_{i,j} = b_{i,j}, 1 \leq i \leq m, 1 \leq j \leq n$
	\n- Examples:
	\n\n
\n

$$
\begin{pmatrix} 3 & 2 \ 5 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 2 \ 5 & 6 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 6 & 7 \ 9 & 0 \end{pmatrix} \neq \begin{pmatrix} -6 & 7 \ 2 & 1 \end{pmatrix}
$$

In Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{p \times q}$ be two matrices. $A = B$ if and only if 1. A and B are of the same order; that is, $m = p$ and $n = q$. 2. $a_{i,j}=b_{i,j}, 1\leq i\leq m, 1\leq j\leq n$ \blacktriangleright Examples:

KORKARYKERKER POLO

$$
\begin{pmatrix} 3 & 2 \ 5 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 2 \ 5 & 6 \end{pmatrix}
$$

\n
$$
\bullet \begin{pmatrix} 6 & 7 \ 9 & 0 \end{pmatrix} \neq \begin{pmatrix} -6 & 7 \ 2 & 1 \end{pmatrix}
$$

\n
$$
\bullet \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}
$$

Addition of two matrices A and B, denoted $A + B$, is defined if A and B are of the same order.

- Addition of two matrices A and B, denoted $A + B$, is defined if A and B are of the same order.
- If it is defined, $A + B$ is obtained by adding the same position elements of A and B.

- Addition of two matrices A and B, denoted $A + B$, is defined if A and B are of the same order.
- If it is defined, $A + B$ is obtained by adding the same position elements of A and B.

$$
\begin{pmatrix} 4 & 2 & 3 \ 5 & 7 & 6 \end{pmatrix} + \begin{pmatrix} 1 & 8 & 9 \ 3 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 4+1 & 2+8 & 3+9 \ 5+3 & 7+5 & 6+4 \end{pmatrix} = \begin{pmatrix} 5 & 10 & 12 \ 8 & 12 & 10 \end{pmatrix}.
$$

- Addition of two matrices A and B, denoted $A + B$, is defined if A and B are of the same order.
- If it is defined, $A + B$ is obtained by adding the same position elements of A and B.

$$
\begin{pmatrix} 4 & 2 & 3 \ 5 & 7 & 6 \end{pmatrix} + \begin{pmatrix} 1 & 8 & 9 \ 3 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 4+1 & 2+8 & 3+9 \ 5+3 & 7+5 & 6+4 \end{pmatrix} =
$$

\n
$$
\begin{pmatrix} 5 & 10 & 12 \ 8 & 12 & 10 \end{pmatrix}.
$$

\n
$$
\begin{pmatrix} 4 & 2 & 3 \ 5 & 7 & 6 \end{pmatrix} + \begin{pmatrix} 1 & 8 & 9 & 2 \ 3 & 5 & 4 & 9 \end{pmatrix}
$$
 is not defined.

 \blacktriangleright The product of a scalar and a $m \times n$ matrix A is simply an $m \times n$ matrix where each element in A is multiplied by the scalar.

 \blacktriangleright The product of a scalar and a $m \times n$ matrix A is simply an $m \times n$ matrix where each element in A is multiplied by the scalar.

$$
\blacktriangleright 4 \cdot \begin{pmatrix} 3 & 2 & 5 \\ 6 & 1 & 7 \end{pmatrix} = \begin{pmatrix} 4 \cdot 3 & 4 \cdot 2 & 4 \cdot 5 \\ 4 \cdot 6 & 4 \cdot 1 & 4 \cdot 7 \end{pmatrix} = \begin{pmatrix} 12 & 8 & 20 \\ 24 & 4 & 28 \end{pmatrix}
$$

 \triangleright A dot product is a multiplication of a row vector of order $1 \times n$ with a column vector of order $n \times 1$. The result is a scalar.

- \triangleright A dot product is a multiplication of a row vector of order $1 \times n$ with a column vector of order $n \times 1$. The result is a scalar.
- It is obtained by multiplying the *i*th element of the row vector with the *i*th element of the column vector and then summing these products.

- \triangleright A dot product is a multiplication of a row vector of order $1 \times n$ with a column vector of order $n \times 1$. The result is a scalar.
- It is obtained by multiplying the *i*th element of the row vector with the *i*th element of the column vector and then summing these products.

$$
\blacktriangleright A = (a_1 a_2 \cdots a_n), B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}
$$

- \triangleright A dot product is a multiplication of a row vector of order $1 \times n$ with a column vector of order $n \times 1$. The result is a scalar.
- It is obtained by multiplying the *i*th element of the row vector with the *i*th element of the column vector and then summing these products.

$$
A = (a_1 a_2 \cdots a_n), B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}
$$

$$
A \cdot B = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n
$$

• An example of dot product
\n•
$$
A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}
$$

K ロ K K d K K B K K B K X B K Y Q Q Q

\n- An example of dot product
\n- $$
A = (1 \ 2 \ 3), B = \binom{4}{5}
$$
\n- $A \cdot B = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 4 + 10 + 18 = 32$
\n

K ロ K K d K K B K K B K X B K Y Q Q Q

Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix (note the number of columns of A is the same as the number of rows of B). Then the **matrix multiplication** $A \cdot B$ is defined.

- Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix (note the number of columns of A is the same as the number of rows of B). Then the **matrix multiplication** $A \cdot B$ is defined.
- \blacktriangleright The result is an $m \times n$ matrix (resulting matrix has the same number of rows as A and the same number of columns as B).

KORKARYKERKER POLO

- Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix (note the number of columns of A is the same as the number of rows of B). Then the **matrix multiplication** $A \cdot B$ is defined.
- In The result is an $m \times n$ matrix (resulting matrix has the same number of rows as A and the same number of columns as B).
- \blacktriangleright The (i, j) th entry of the resulting matrix is the dot product of row i of A and column j of B .

KORKARYKERKER POLO

- Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix (note the number of columns of A is the same as the number of rows of B). Then the **matrix multiplication** $A \cdot B$ is defined.
- In The result is an $m \times n$ matrix (resulting matrix has the same number of rows as A and the same number of columns as B).
- \blacktriangleright The (i, j) th entry of the resulting matrix is the dot product of row i of A and column j of B .

KORKARYKERKER POLO

 \blacktriangleright Example:

- Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix (note the number of columns of A is the same as the number of rows of B). Then the **matrix multiplication** $A \cdot B$ is defined.
- In The result is an $m \times n$ matrix (resulting matrix has the same number of rows as A and the same number of columns as B).
- \blacktriangleright The (i, j) th entry of the resulting matrix is the dot product of row i of A and column j of B .

KORKARYKERKER POLO

 \blacktriangleright Example:

$$
\blacktriangleright A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \end{pmatrix}
$$

- Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix (note the number of columns of A is the same as the number of rows of B). Then the **matrix multiplication** $A \cdot B$ is defined.
- In The result is an $m \times n$ matrix (resulting matrix has the same number of rows as A and the same number of columns as B).
- \blacktriangleright The (i, j) th entry of the resulting matrix is the dot product of row i of A and column j of B .
- \blacktriangleright Example:

$$
\blacktriangleright A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \end{pmatrix}
$$

 \blacktriangleright Multiplication is defined because the number of columns of A is the same as the number of rows of B.

KORKARYKERKER POLO
Matrices

- Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix (note the number of columns of A is the same as the number of rows of B). Then the **matrix multiplication** $A \cdot B$ is defined.
- In The result is an $m \times n$ matrix (resulting matrix has the same number of rows as A and the same number of columns as B).
- \blacktriangleright The (i, j) th entry of the resulting matrix is the dot product of row i of A and column j of B .
- \blacktriangleright Example:

$$
\blacktriangleright A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \end{pmatrix}
$$

- \blacktriangleright Multiplication is defined because the number of columns of A is the same as the number of rows of B.
- Result will be a 2×2 matrix.

Matrices

- Suppose A is an $m \times p$ matrix and B is a $p \times n$ matrix (note the number of columns of A is the same as the number of rows of B). Then the **matrix multiplication** $A \cdot B$ is defined.
- In The result is an $m \times n$ matrix (resulting matrix has the same number of rows as A and the same number of columns as B).
- \blacktriangleright The (i, j) th entry of the resulting matrix is the dot product of row i of A and column j of B .
- \blacktriangleright Example:

$$
\blacktriangleright A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \end{pmatrix}
$$

- \blacktriangleright Multiplication is defined because the number of columns of A is the same as the number of rows of B .
- Result will be a 2×2 matrix.
- Intry in position $(2, 1)$ in the resulting matrix will be the dot product of the 2nd row in A with the 1st column of B : $a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41}.$

$$
\blacktriangleright A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

$$
\blacktriangleright A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}
$$

 \triangleright A $*$ B is not defined since A's columns does not equal to B's rows.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
\blacktriangleright A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}
$$

 \triangleright A $*$ B is not defined since A's columns does not equal to B's rows.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

► However, $B \times A$ is defined and its result is 3×2

$$
\blacktriangleright A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}
$$

 \triangleright A $*$ B is not defined since A's columns does not equal to B's rows.

► However, $B \times A$ is defined and its result is 3×2

$$
B * A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} * \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \\ C_{31} & C_{32} \end{pmatrix} = \begin{pmatrix} 7 & 10 \\ 15 & 22 \\ 23 & 34 \end{pmatrix}
$$

\n
$$
C_{11} = (1 \ 2) * \begin{pmatrix} 1 \\ 3 \end{pmatrix} = 1 * 1 + 2 * 3 = 7
$$

\n
$$
C_{12} = (1 \ 2) * \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 1 * 2 + 2 * 4 = 10
$$

\n
$$
C_{21} = 3 * 1 + 4 * 3 = 15, C_{22} = 3 * 2 + 4 * 4 = 22
$$

\n
$$
C_{31} = 5 * 1 + 6 * 3 = 23, C_{32} = 5 * 2 + 6 * 4 = 34
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →