CS 3333: Mathematical Foundations

More Matrices

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

$$A = \begin{pmatrix} 1 & 5 & 4 & 7 \end{pmatrix}$$

$$B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

•
$$A = \begin{pmatrix} 1 & 5 & 4 & 7 \end{pmatrix}$$

• $B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$
• Is $A \cdot B$ defined?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$A = \begin{pmatrix} 1 & 5 & 4 & 7 \end{pmatrix}$$

$$B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$$

$$Is A \cdot B \text{ defined}?$$

$$Yes. A \text{ has the same number of columns as } B \text{ has rows.}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$A = \begin{pmatrix} 1 & 5 & 4 & 7 \end{pmatrix}$$

$$B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$$

$$B = A \cdot B \text{ defined?}$$

$$Yes. A \text{ has the same number of columns as } B \text{ has rows.}$$

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ●

$$A = \begin{pmatrix} 1 & 5 & 4 & 7 \end{pmatrix}$$

$$B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$$

$$Is A \cdot B \text{ defined?}$$

$$Yes. A \text{ has the same number of columns as } B \text{ has rows.}$$

$$What is the order of A \cdot B?$$

$$It is 1 \times 1 (a \text{ scalar}).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Yes. B has the same number of columns as A has rows.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• B?

Yes. B has the same number of columns as A has rows.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $A \cdot B?$

• What is the order of $B \cdot A$?

Yes. B has the same number of columns as A has rows.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $A \cdot B?$

• What is the order of $B \cdot A$?

 \blacktriangleright It is 4 \times 4.

• Let
$$A = (a_{ij})_{m \times p}$$
 and $B = (b_{ij})_{p \times n}$.

• Let
$$A = (a_{ij})_{m \times p}$$
 and $B = (b_{ij})_{p \times n}$.

Matrix multiplication algorithm to compute C = (c_{ij})_{m×n} = A · B:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

What is the computational complexity of this algorithm?

What is the computational complexity of this algorithm?

• There are $m \cdot n \cdot p$ multiplications, and $m \cdot n \cdot (p-1)$ additions.

What is the computational complexity of this algorithm?

- There are $m \cdot n \cdot p$ multiplications, and $m \cdot n \cdot (p-1)$ additions.
- Running time is $O(m \cdot n \cdot p)$

What is the computational complexity of this algorithm?

- There are $m \cdot n \cdot p$ multiplications, and $m \cdot n \cdot (p-1)$ additions.
- Running time is $O(m \cdot n \cdot p)$

 $\blacktriangleright A_{m \times p} \cdot B_{p \times q} \cdot C_{q \times n} = D_{m \times n}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

The order in which we do the multiplications can greatly impact the running time in computing D.

- $\blacktriangleright A_{m \times p} \cdot B_{p \times q} \cdot C_{q \times n} = D_{m \times n}$
- Matrix multiplication is associative.

 $\blacktriangleright (A \cdot B) \cdot C = A \cdot (B \cdot C) = D$

- The order in which we do the multiplications can greatly impact the running time in computing D.
- When calculating D, is it better to compute A · B or B · C first?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ If A is an $n \times n$ square matrix, then $A^2 = A \cdot A$ is defined.

If A is an n × n square matrix, then A² = A · A is defined.
A² is also an n × n matrix, and so therefore A³ = A · A² is also defined.

- If A is an $n \times n$ square matrix, then $A^2 = A \cdot A$ is defined.
- ▶ A^2 is also an $n \times n$ matrix, and so therefore $A^3 = A \cdot A^2$ is also defined.
- ► Inductively, we can see that A^c is defined for any integer c ≥ 1.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- If A is an $n \times n$ square matrix, then $A^2 = A \cdot A$ is defined.
- A^2 is also an $n \times n$ matrix, and so therefore $A^3 = A \cdot A^2$ is also defined.
- ► Inductively, we can see that A^c is defined for any integer c ≥ 1.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• We define A^0 to be I_n (the $n \times n$ identity matrix).

Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• We denote the transpose of A as A^t .

Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

- We denote the transpose of A as A^t .
- Example:

$$\blacktriangleright A = \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix}$$

Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

- We denote the transpose of A as A^t .
- Example:

$$A = \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix}$$

$$A^{t} = \begin{pmatrix} 1 \\ 0 \\ -4 \\ 5 \end{pmatrix}$$

Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

- We denote the transpose of A as A^t .
- Example:

$$A = \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix}$$

$$A^{t} = \begin{pmatrix} 1 \\ 0 \\ -4 \\ 5 \end{pmatrix}$$
Example:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

- Given a matrix A, its transpose is obtained by rewriting rows of A as columns.
- We denote the transpose of A as A^t .
- Example:

$$A = \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix}$$

$$A^{t} = \begin{pmatrix} 1 \\ 0 \\ -4 \\ 5 \end{pmatrix}$$
Example:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

$$A^{t} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

- ▶ We denote the transpose of A as A^t.
- Example:

►
$$A = (1 \ 0 \ -4 \ 5)$$

► $A^t = \begin{pmatrix} 1 \\ 0 \\ -4 \\ 5 \end{pmatrix}$
► Example:
► $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
► $A^t = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
► $A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$
► In general, $A = (a_{ij})_{m \times n}$, $A^t = (a_{ji})_{n \times m}$.

The main diagonal of A is the same as the main diagonal in A^t.

- The main diagonal of A is the same as the main diagonal in A^t.
- Elements that are not on the main diagonal of A will move to the "other side" of the main diagonal in A^t.

- The main diagonal of A is the same as the main diagonal in A^t.
- Elements that are not on the main diagonal of A will move to the "other side" of the main diagonal in A^t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• If $A = A^t$, then we say that A is a symmetric matrix.

- The main diagonal of A is the same as the main diagonal in A^t.
- Elements that are not on the main diagonal of A will move to the "other side" of the main diagonal in A^t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• If $A = A^t$, then we say that A is a symmetric matrix.

• Example:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 is a symmetric matrix.
- The main diagonal of A is the same as the main diagonal in A^t.
- Elements that are not on the main diagonal of A will move to the "other side" of the main diagonal in A^t.
- If $A = A^t$, then we say that A is a symmetric matrix.
 - Example: $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ is a symmetric matrix.
- If L is a lower triangular matrix of size n × n, then L^t is an upper triangular matrix of size n × n and vice versa.

Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.
- If A is a square matrix, then we denote the determinant |A| or det(A).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.
- If A is a square matrix, then we denote the determinant |A| or det(A).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• How to compute for a 2×2 matrix:

- Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.
- If A is a square matrix, then we denote the determinant |A| or det(A).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• How to compute for a 2×2 matrix:

• Let
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

- Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.
- If A is a square matrix, then we denote the determinant |A| or det(A).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ How to compute for a 2 × 2 matrix:

• Let
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

• $|A| = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

• How to compute determinant of a 3×3 matrix:

• How to compute determinant of a 3×3 matrix:

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

• Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

• How to compute determinant of a 3×3 matrix:

• Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Write the first two columns again after the third column:

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

a_{11}	a_{12}	a_{13}	a ₁₁	a_{12}
a_{21}	a ₂₂	a ₂₃	a ₂₁	<i>a</i> ₂₂
a_{31}	a ₃₂	a ₃₃	a ₃₁	a 32

Consi	der th	ie "dov	wnward	diagonals"	:
211	210	212	211	210	

・ロト・日本・日本・日本・日本・日本

~	-			-
a_{21}	a ₂₂	a23	a ₂₁	a ₂₂
a ₃₁	a ₃₂	a 33	<i>a</i> ₃₁	a 32

Consider the "downward diagonals": a11 **a**₁₂ **a**₁₃ a₁₁ a₁₂ a₂₁ a₂₂ a₂₃ a_{21} a22 a₃₁ a₃₂ a₃₃ **a**31 a32 a_{11} a_{12} a₁₃ *a*₁₁ *a*₁₂ Consider the "upward diagonals": *a*₂₁ **a**22 **a**23 **a**21 **a**22 **a**31 **a**32 **a**33 a₃₁ a32

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider the "downward diagonals": **a**₁₂ **a**₁₃ **a**11 *a*₁₁ a_{12} **a**₂₁ **a**₂₂ **a**₂₃ **a**₂₁ a22 *a*₃₂ *a*₃₃ *a*₃₁ **a**31 a32 a_{11} a_{12} a₁₃ **a**₁₁ a_{12} Consider the "upward diagonals": a_{21} a22 a23 a_{21} a22 **a**₃₁ **a**₃₂ **a**₃₃ a_{31} **a**₃₂

The determinant is the sum of the products of the downward diagonals minus the sum of the products of the upward diagonals. This is called **Sarrus' rule** and only applies to 3 × 3 matrices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider the "downward diagonals": **a**₁₂ **a**₁₃ **a**11 *a*₁₁ a_{12} **a**₂₁ **a**₂₂ **a**₂₃ **a**₂₁ a22 *a*₃₂ *a*₃₃ *a*₃₁ **a**31 a32 a_{11} a_{12} a₁₃ **a**₁₁ a_{12} Consider the "upward diagonals": a_{21} a22 a23 a_{21} a22 **a**₃₁ **a**₃₂ **a**₃₃ a_{31} **a**₃₂

The determinant is the sum of the products of the downward diagonals minus the sum of the products of the upward diagonals. This is called **Sarrus' rule** and only applies to 3 × 3 matrices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

We can compute the determinant of an n × n matrix by using the Laplace Expansion.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- We can compute the determinant of an n × n matrix by using the Laplace Expansion.
- Each element of an n × n matrix A has a minor M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We can compute the determinant of an n × n matrix by using the Laplace Expansion.
- Each element of an n × n matrix A has a minor M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Example: Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

- We can compute the determinant of an n × n matrix by using the Laplace Expansion.
- Each element of an n × n matrix A has a minor M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Example: Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.
• $M_{11} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$.

- We can compute the determinant of an n × n matrix by using the Laplace Expansion.
- Each element of an n × n matrix A has a minor M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Example: Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.
• $M_{11} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$.

• The **cofactor** of a_{ij} is denoted $C_{ij} = (-1)^{i+j} M_{ij}$.

- We can compute the determinant of an n × n matrix by using the Laplace Expansion.
- Each element of an n × n matrix A has a minor M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

• Example: Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.
• $M_{11} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$.

- The **cofactor** of a_{ij} is denoted $C_{ij} = (-1)^{i+j} M_{ij}$.
- Pick any row or any column. Suppose we pick row 1. The determinant of A can be computed as a₁₁ · C₁₁ + a₁₂ · C₁₂ + · · · + a_{1n} · C_{1n}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We can compute the determinant of an n × n matrix by using the Laplace Expansion.
- Each element of an n × n matrix A has a minor M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

• Example: Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.
• $M_{11} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$.

- The **cofactor** of a_{ij} is denoted $C_{ij} = (-1)^{i+j} M_{ij}$.
- Pick any row or any column. Suppose we pick row 1. The determinant of A can be computed as a₁₁ · C₁₁ + a₁₂ · C₁₂ + · · · + a_{1n} · C_{1n}.
- This works for any row or any column (no matter which row or column we choose, we will get the same value).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

• Compute determinant of
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

(ロ) (型) (主) (主) (三) のへで

Exercise

• Compute determinant of
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Take the second row $|A| = -1 * \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} + 4 * \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} - 3 * \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}$ |A| = -10

▲□▶▲□▶▲□▶▲□▶ □ のQの

Exercise

• Compute determinant of
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Take the second row $|A| = -1 * \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} + 4 * \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} - 3 * \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}$ |A| = -10

Can you calculate it by picking another row or column?

The rank of an m × n matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The rank of an m × n matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Example:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

The rank of an m × n matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

• Example:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

We can show that for any diagonal matrix D, the |D| is simply the product of the elements along the diagonal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The rank of an m × n matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

• Example:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- We can show that for any diagonal matrix D, the |D| is simply the product of the elements along the diagonal.
- Then |A| = 0, so the rank of A must be less than 3. Is there a 2 × 2 submatrix of A whose determinant is nonzero?

The rank of an m × n matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

• Example:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- We can show that for any diagonal matrix D, the |D| is simply the product of the elements along the diagonal.
- Then |A| = 0, so the rank of A must be less than 3. Is there a 2×2 submatrix of A whose determinant is nonzero?

• $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is a 2 × 2 submatrix of A whose determinant is 1.

The rank of an m × n matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

• Example:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- We can show that for any diagonal matrix D, the |D| is simply the product of the elements along the diagonal.
- Then |A| = 0, so the rank of A must be less than 3. Is there a 2×2 submatrix of A whose determinant is nonzero?

- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is a 2 × 2 submatrix of A whose determinant is 1.
- Therefore the rank of A is 2.

• What is the **rank** of the following matrix A? • $A = \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• What is the **rank** of the following matrix A? • $A = \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix} \xrightarrow{r_4 = r_4 - r_2; r_3 = r_3 + r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ 0 & -7 & -1 & 12 \\ 0 & 7 & 1 & -12 \end{pmatrix}$

What is the rank of the following matrix A? A = $\begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix} \xrightarrow{r_4 = r_4 - r_2; r_3 = r_3 + r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ 0 & -7 & -1 & 12 \\ 0 & 7 & 1 & -12 \end{pmatrix}$ $\xrightarrow{r_4 = r_4 + r_3; r_2 = r_2 - 3r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 7 & 1 & -12 \\ 0 & -7 & -1 & 12 \\ 0 & -7 & -1 & 12 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

What is the rank of the following matrix A? A = $\begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix} \xrightarrow{r_4 = r_4 - r_2; r_3 = r_3 + r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ 0 & -7 & -1 & 12 \\ 0 & 7 & 1 & -12 \end{pmatrix}$ $\xrightarrow{r_4 = r_4 + r_3; r_2 = r_2 - 3r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 7 & 1 & -12 \\ 0 & -7 & -1 & 12 \\ 0 & -7 & -1 & 12 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_3 = r_3 + r_2} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 7 & 1 & -12 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is the rank of the following matrix A? A = $\begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix} \xrightarrow{r_4 = r_4 - r_2; r_3 = r_3 + r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 1 & -1 & 0 \\ 0 & 7 & 1 & -12 \\ 0 & 7 & 1 & -12 \end{pmatrix} \xrightarrow{r_4 = r_4 + r_3; r_2 = r_2 - 3r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 7 & 1 & -12 \\ 0 & 7 & 1 & -12 \\ 0 & -7 & -1 & 12 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_3 = r_3 + r_2} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 7 & 1 & -12 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ So, the rank is 2.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@