CS 3333: Mathematical Foundations

More Matrices

$$
A = \begin{pmatrix} 1 & 5 & 4 & 7 \end{pmatrix}
$$

$$
B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}
$$

KOKK@KKEKKEK E 1990

$$
A = \begin{pmatrix} 1 & 5 & 4 & 7 \end{pmatrix}
$$

$$
B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}
$$

$$
B = \begin{pmatrix} 1 \\ -4 \\ 2 \\ 3 \end{pmatrix}
$$

$$
B = \begin{pmatrix} 1 \\ -4 \\ 2 \\ 3 \end{pmatrix}
$$

$$
B = \begin{pmatrix} 1 \\ -4 \\ 2 \\ 3 \end{pmatrix}
$$

KOKK@KKEKKEK E 1990

\n- $$
A = \begin{pmatrix} 1 & 5 & 4 & 7 \end{pmatrix}
$$
\n- $B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$
\n- Is $A \cdot B$ defined?
\n- Yes. A has the same number of columns as B has rows.
\n

Kロトメ部トメミトメミト ミニのQC

\n- $$
A = (1 \ 5 \ 4 \ 7)
$$
\n- $B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$
\n- Is $A \cdot B$ defined?
\n- Yes. A has the same number of columns as B has rows.
\n- What is the order of $A \cdot B$?
\n

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

\n- $$
A = (1 \ 5 \ 4 \ 7)
$$
\n- $B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$
\n- Is $A \cdot B$ defined?
\n- Yes. A has the same number of columns as B has rows.
\n- What is the order of $A \cdot B$?
\n- It is 1×1 (a scalar).
\n

Kロトメ部トメミトメミト ミニのQC

\n- $$
A = (1 \ 5 \ 4 \ 7)
$$
\n- $B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$
\n- Is $A \cdot B$ defined?
\n- Yes. A has the same number of columns as B has rows.
\n- What is the order of $A \cdot B$?
\n- It is 1×1 (a scalar).
\n- Is $B \cdot A$ defined?
\n

Kロトメ部トメミトメミト ミニのQC

\n- $$
A = (1 \ 5 \ 4 \ 7)
$$
\n- $B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$
\n- Is $A \cdot B$ defined?
\n- Yes. A has the same number of columns as B has rows.
\n- What is the order of $A \cdot B$?
\n- It is 1×1 (a scalar).
\n- Is $B \cdot A$ defined?
\n

 \blacktriangleright Yes. B has the same number of columns as A has rows.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

\n- $$
A = (1 \ 5 \ 4 \ 7)
$$
\n- $B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$
\n- Is $A \cdot B$ defined?
\n- Yes. A has the same number of columns as B has rows.
\n- What is the order of $A \cdot B$?
\n- It is 1×1 (a scalar).
\n- Is $B \cdot A$ defined?
\n- Yes. B has the same number of columns as A has rows.
\n

 \blacktriangleright What is the order of $B \cdot A$?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

\n- $$
A = (1 \ 5 \ 4 \ 7)
$$
\n- $B = \begin{pmatrix} 7 \\ -4 \\ 2 \\ 3 \end{pmatrix}$
\n- Is $A \cdot B$ defined?
\n- Yes. A has the same number of columns as B has rows.
\n- What is the order of $A \cdot B$?
\n- It is 1×1 (a scalar).
\n- Is $B \cdot A$ defined?
\n- Yes. B has the same number of columns as A has rows.
\n- What is the order of $B \cdot A$?
\n

It is 4×4 .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Let
$$
A = (a_{ij})_{m \times p}
$$
 and $B = (b_{ij})_{p \times n}$.

KOKK@KKEKKEK E 1990

Let
$$
A = (a_{ij})_{m \times p}
$$
 and $B = (b_{ij})_{p \times n}$.

 \blacktriangleright Matrix multiplication algorithm to compute $C = (c_{ii})_{m \times n} = A \cdot B$:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

\n- Let
$$
A = (a_{ij})_{m \times p}
$$
 and $B = (b_{ij})_{p \times n}$.
\n- Matrix multiplication algorithm to compute $C = (c_{ij})_{m \times n} = A \cdot B$:\n
	\n- for $i = 1 \rightarrow m$ do
	\n- for $j = 1 \rightarrow n$ do
	\n- $c_{ij} = 0$
	\n- for $k = 1 \rightarrow p$ do
	\n- $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$
	\n- end for
	\n- end for
	\n\n
\n

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

```
In Let A = (a_{ij})_{m \times p} and B = (b_{ij})_{p \times n}.
\blacktriangleright Matrix multiplication algorithm to compute
    C = (c_{ii})_{m \times n} = A \cdot B:
If the i i = 1 \rightarrow m do
             for j = 1 \rightarrow n do
                  c_{ii} = 0for k = 1 \rightarrow p do
                       c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}end for
             end for
       end for
```
 \triangleright What is the computational complexity of this algorithm?

KORKARYKERKER POLO

\n- Let
$$
A = (a_{ij})_{m \times p}
$$
 and $B = (b_{ij})_{p \times n}$.
\n- Matrix multiplication algorithm to compute $C = (c_{ij})_{m \times n} = A \cdot B$:\n
	\n- for $i = 1 \rightarrow m$ do
	\n- for $j = 1 \rightarrow n$ do
	\n- $c_{ij} = 0$
	\n- for $k = 1 \rightarrow p$ do
	\n- $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$
	\n- end for
	\n- end for
	\n\n
\n

 \triangleright What is the computational complexity of this algorithm?

IF There are $m \cdot n \cdot p$ multiplications, and $m \cdot n \cdot (p-1)$ additions.

KO K K Ø K K E K K E K V K K K K K K K K K

\n- Let
$$
A = (a_{ij})_{m \times p}
$$
 and $B = (b_{ij})_{p \times n}$.
\n- Matrix multiplication algorithm to compute $C = (c_{ij})_{m \times n} = A \cdot B$:
\n- For $i = 1 \rightarrow m$ do for $j = 1 \rightarrow n$ do for $i = 0$ for $k = 1 \rightarrow p$ do for $k = 1 \rightarrow p$ do for $k = 1 \rightarrow p$ do for $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ end for end for
\n

 \triangleright What is the computational complexity of this algorithm?

IF There are $m \cdot n \cdot p$ multiplications, and $m \cdot n \cdot (p-1)$ additions.

Running time is $O(m \cdot n \cdot p)$

\n- Let
$$
A = (a_{ij})_{m \times p}
$$
 and $B = (b_{ij})_{p \times n}$.
\n- Matrix multiplication algorithm to compute $C = (c_{ij})_{m \times n} = A \cdot B$:
\n- For $i = 1 \rightarrow m$ do for $j = 1 \rightarrow n$ do for $i = 0$ for $k = 1 \rightarrow p$ do for $k = 1 \rightarrow p$ do for $k = 1 \rightarrow p$ do for $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ end for end for
\n

 \triangleright What is the computational complexity of this algorithm?

IF There are $m \cdot n \cdot p$ multiplications, and $m \cdot n \cdot (p-1)$ additions.

Running time is $O(m \cdot n \cdot p)$

 $A_{m\times p} \cdot B_{p\times q} \cdot C_{q\times n} = D_{m\times n}$

\n- $$
A_{m \times p} \cdot B_{p \times q} \cdot C_{q \times n} = D_{m \times n}
$$
\n- Matrix multiplication is associative.
\n- $A \cdot B \cdot C = A \cdot (B \cdot C) = D$
\n

KOKK@KKEKKEK E 1990

 $A_{m\times p} \cdot B_{p\times q} \cdot C_{q\times n} = D_{m\times n}$ \blacktriangleright Matrix multiplication is associative. $(A \cdot B) \cdot C = A \cdot (B \cdot C) = D$

 \triangleright The order in which we do the multiplications can greatly impact the running time in computing D.

KORKARYKERKER POLO

- $A_{m\times p} \cdot B_{p\times q} \cdot C_{q\times n} = D_{m\times n}$
- \blacktriangleright Matrix multiplication is associative.

 $(A \cdot B) \cdot C = A \cdot (B \cdot C) = D$

- \blacktriangleright The order in which we do the multiplications can greatly impact the running time in computing D.
- \triangleright When calculating D, is it better to compute $A \cdot B$ or $B \cdot C$ first?

KORKARYKERKER POLO

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

If A is an $n \times n$ square matrix, then $A^2 = A \cdot A$ is defined. A² is also an $n \times n$ matrix, and so therefore $A^3 = A \cdot A^2$ is also defined.

- If A is an $n \times n$ square matrix, then $A^2 = A \cdot A$ is defined.
- A² is also an $n \times n$ matrix, and so therefore $A^3 = A \cdot A^2$ is also defined.
- Inductively, we can see that A^c is defined for any integer $c > 1$.

- If A is an $n \times n$ square matrix, then $A^2 = A \cdot A$ is defined.
- A² is also an $n \times n$ matrix, and so therefore $A^3 = A \cdot A^2$ is also defined.
- Inductively, we can see that A^c is defined for any integer $c > 1$.

 \blacktriangleright We define A^0 to be I_n (the $n \times n$ identity matrix).

 \triangleright Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

 \triangleright Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright We denote the transpose of A as A^t .

 \triangleright Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

- \blacktriangleright We denote the transpose of A as A^t .
- \blacktriangleright Example:

$$
\blacktriangleright A = \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix}
$$

 \triangleright Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

- \blacktriangleright We denote the transpose of A as A^t .
- \blacktriangleright Example:

$$
\begin{aligned} \triangleright A &= \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix} \\ \triangleright A^t &= \begin{pmatrix} 1 \\ 0 \\ -4 \\ 5 \end{pmatrix} \end{aligned}
$$

 \triangleright Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

- \blacktriangleright We denote the transpose of A as A^t .
- \blacktriangleright Example:

$$
A = \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix}
$$

\n
$$
A^t = \begin{pmatrix} 1 \\ 0 \\ -4 \\ 5 \end{pmatrix}
$$

\nExample:

$$
\blacktriangleright A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}
$$

- \triangleright Given a matrix A, its transpose is obtained by rewriting rows of A as columns.
- \blacktriangleright We denote the transpose of A as A^t .
- \blacktriangleright Example:

$$
A = \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix}
$$

\n
$$
A^t = \begin{pmatrix} 1 \\ 0 \\ -4 \\ 5 \end{pmatrix}
$$

\nExample:
\n
$$
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}
$$

\n
$$
A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}
$$

 \triangleright Given a matrix A, its transpose is obtained by rewriting rows of A as columns.

- \blacktriangleright We denote the transpose of A as A^t .
- \blacktriangleright Example:

$$
A = \begin{pmatrix} 1 & 0 & -4 & 5 \end{pmatrix}
$$

\n
$$
A^t = \begin{pmatrix} 1 \\ 0 \\ -4 \\ 5 \end{pmatrix}
$$

\nExample:
\n
$$
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}
$$

\n
$$
A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}
$$

\nIn general, $A = (a_{ij})_{m \times n}$, $A^t = (a_{ji})_{n \times m}$.

 \blacktriangleright The main diagonal of A is the same as the main diagonal in A^t .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

- \blacktriangleright The main diagonal of A is the same as the main diagonal in A^t .
- \blacktriangleright Elements that are not on the main diagonal of A will move to the "other side" of the main diagonal in A^t .

- \blacktriangleright The main diagonal of A is the same as the main diagonal in A^t .
- \blacktriangleright Elements that are not on the main diagonal of A will move to the "other side" of the main diagonal in A^t .

If $A = A^t$, then we say that A is a **symmetric matrix**.

- \blacktriangleright The main diagonal of A is the same as the main diagonal in A^t .
- \blacktriangleright Elements that are not on the main diagonal of A will move to the "other side" of the main diagonal in A^t .

If $A = A^t$, then we say that A is a **symmetric matrix**.

Example:
\n
$$
\begin{pmatrix}\n1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0\n\end{pmatrix}
$$
 is a symmetric matrix.
- \blacktriangleright The main diagonal of A is the same as the main diagonal in A^t .
- \blacktriangleright Elements that are not on the main diagonal of A will move to the "other side" of the main diagonal in A^t .
- If $A = A^t$, then we say that A is a **symmetric matrix**.
	- \blacktriangleright Example: \setminus

 \blacktriangleright

- $\sqrt{ }$ 1 0 1
- \mathcal{L} 0 0 1 is a symmetric matrix.
	- 1 1 0
- If L is a lower triangular matrix of size $n \times n$, then L^t is an upper triangular matrix of size $n \times n$ and vice versa.

 \triangleright Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- \triangleright Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.
- If A is a square matrix, then we denote the determinant $|A|$ or $det(A)$.

- \triangleright Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.
- If A is a square matrix, then we denote the determinant $|A|$ or $det(A)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright How to compute for a 2 \times 2 matrix:

- \triangleright Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.
- If A is a square matrix, then we denote the determinant $|A|$ or $det(A)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright How to compute for a 2 \times 2 matrix:

$$
\blacktriangleright \ \mathsf{Let}\ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}
$$

- \triangleright Determinants are defined for square matrices. It is a function that assigns a scalar value to a square matrix.
- If A is a square matrix, then we denote the determinant $|A|$ or $det(A)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright How to compute for a 2 \times 2 matrix:

$$
\begin{array}{ll} \blacktriangleright & \text{Let } A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \\ \blacktriangleright & |A| = a_{11} \cdot a_{22} - a_{12} \cdot a_{21} \end{array}
$$

 \blacktriangleright How to compute determinant of a 3 \times 3 matrix:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright How to compute determinant of a 3 \times 3 matrix:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
\triangleright \text{ Let } A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}
$$

 \blacktriangleright How to compute determinant of a 3 \times 3 matrix:

• Let
$$
A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}
$$

\n• Write the first two columns again after the third column:
\n a_{11} a_{12} a_{13} | a_{11} a_{12}
\n a_{21} a_{22} a_{23} | a_{21} a_{22}

Kロトメ部トメミトメミト ミニのQC

 a_{31} a_{32} a_{33} a_{31} a_{32}

Kロト K個 K K ミト K ミト ニミーのR C

 \triangleright Consider the "downward diagonals": a_{11} a_{12} a_{13} | a_{11} a_{12} a_{21} a_{22} a_{23} | a_{21} a_{22} a_{31} a_{32} a_{33} a_{31} a_{32} a_{12} a_{13} | a_{11} a_{11} a_{12} Consider the "upward diagonals": a_{21} a_{22} a_{23} | a_{21} a_{22} a_{32} a_{33} | a_{31} a_{31} a_{32}

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q

 \triangleright Consider the "downward diagonals": a_{12} a_{13} | a_{11} a_{11} a_{12} a_{21} a_{22} a_{23} | a_{21} a_{22} a_{31} a_{32} a_{33} | a_{31} a_{32} a_{11} a_{12} a_{13} a_{11} a_{12} ► Consider the "upward diagonals": a_{21} a_{22} a_{23} a_{21} a_{22} a_{31} a_{32} a_{33} | a_{31} a_{32}

 \triangleright The determinant is the sum of the products of the downward diagonals minus the sum of the products of the upward diagonals. This is called **Sarrus' rule** and only applies to 3×3 matrices.

KORKARYKERKER POLO

 \triangleright Consider the "downward diagonals": a_{11} a_{12} a_{13} | a_{11} a_{12} a_{21} a_{22} a_{23} | a_{21} a_{22} a_{31} a_{32} a_{33} | a_{31} a_{32} a_{11} a_{12} a_{13} | a_{11} a_{12} • Consider the "upward diagonals": a_{21} a_{22} a_{23} | a_{21} a_{22} a_{31} a_{32} a_{33} | a_{31} a_{32}

 \triangleright The determinant is the sum of the products of the downward diagonals minus the sum of the products of the upward diagonals. This is called **Sarrus' rule** and only applies to 3×3 matrices.

KORKARYKERKER POLO

 $|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{14}a_{32}a_{31}$ $a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$

 \triangleright We can compute the determinant of an $n \times n$ matrix by using the Laplace Expansion.

Kロトメ部トメミトメミト ミニのQC

- \triangleright We can compute the determinant of an $n \times n$ matrix by using the Laplace Expansion.
- Each element of an $n \times n$ matrix A has a **minor** M_{ii} which is the determinant of the submatrix obtained by removing row i and column j from A.

- \triangleright We can compute the determinant of an $n \times n$ matrix by using the Laplace Expansion.
- Each element of an $n \times n$ matrix A has a **minor** M_{ii} which is the determinant of the submatrix obtained by removing row i and column j from A.

$$
\blacktriangleright \text{ Example: Let } A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.
$$

- \triangleright We can compute the determinant of an $n \times n$ matrix by using the Laplace Expansion.
- Each element of an $n \times n$ matrix A has a **minor** M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

$$
\sum \text{Example: Let } A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.
$$

$$
\sum M_{11} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}.
$$

- \triangleright We can compute the determinant of an $n \times n$ matrix by using the Laplace Expansion.
- Each element of an $n \times n$ matrix A has a **minor** M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\triangleright \text{ Example: Let } A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.
$$

$$
\triangleright M_{11} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}.
$$

I $\frac{1}{31}$ $\frac{1}{32}$ $\frac{1}{33}$ $\frac{1}{33}$ **The cofactor** of a_{ij} is denoted $C_{ij} = (-1)^{i+j} M_{ij}$.

- \triangleright We can compute the determinant of an $n \times n$ matrix by using the Laplace Expansion.
- Each element of an $n \times n$ matrix A has a **minor** M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

$$
\sum \text{Example: Let } A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.
$$

$$
\sum \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}.
$$

- **IF** The **cofactor** of a_{ij} is denoted $C_{ij} = (-1)^{i+j} M_{ij}$.
- \triangleright Pick any row or any column. Suppose we pick row 1. The determinant of A can be computed as $a_{11} \cdot C_{11} + a_{12} \cdot C_{12} + \cdots + a_{1n} \cdot C_{1n}$

KORKAR KERKER SAGA

- \triangleright We can compute the determinant of an $n \times n$ matrix by using the Laplace Expansion.
- Each element of an $n \times n$ matrix A has a **minor** M_{ij} which is the determinant of the submatrix obtained by removing row i and column j from A.

$$
\sum \text{Example: Let } A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.
$$

$$
\sum \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}.
$$

- **IF** The **cofactor** of a_{ij} is denoted $C_{ij} = (-1)^{i+j} M_{ij}$.
- \triangleright Pick any row or any column. Suppose we pick row 1. The determinant of A can be computed as $a_{11} \cdot C_{11} + a_{12} \cdot C_{12} + \cdots + a_{1n} \cdot C_{1n}$
- \blacktriangleright This works for any row or any column (no matter which row or colu[m](#page-54-0)n we choose, we will get the same [v](#page-56-0)[a](#page-48-0)[lu](#page-49-0)[e\)](#page-56-0)[.](#page-0-0)

LED KARD KED KED E VOOR

Exercise

$$
\bullet \quad \text{Compute determinant of } A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 2 & 3 & 1 \end{pmatrix}
$$

K ロ K K d K K B K K B K X A K K K G K C K

Exercise

$$
\bullet \quad \text{Compute determinant of } A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 2 & 3 & 1 \end{pmatrix}
$$

 \blacktriangleright Take the second row \blacktriangleright $|A| = -1 *$ 2 3 3 1 $\begin{array}{c} \hline \end{array}$ $+ 4 *$ 1 3 2 1 $\Big| -3 * \Big|$ 1 2 2 3 $\begin{array}{c} \hline \end{array}$ $|A| = -10$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Exercise

$$
\triangleright \text{ Compute determinant of } A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 2 & 3 & 1 \end{pmatrix}
$$

 \blacktriangleright Take the second row \blacktriangleright $|A| = -1 *$ 2 3 3 1 $\begin{array}{c} \hline \end{array}$ $+ 4 *$ 1 3 2 1 $\Big| -3 * \Big|$ 1 2 2 3 $\begin{array}{c} \hline \end{array}$ $|A| = -10$

 \triangleright Can you calculate it by picking another row or column?

KORKARYKERKER POLO

The rank of an $m \times n$ matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The rank of an $m \times n$ matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\blacktriangleright \text{ Example: } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

 \blacktriangleright The rank of an $m \times n$ matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

$$
\blacktriangleright \text{ Example: } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

 \triangleright We can show that for any diagonal matrix D, the $|D|$ is simply the product of the elements along the diagonal.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright The rank of an $m \times n$ matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

$$
\blacktriangleright \text{ Example: } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

- \triangleright We can show that for any diagonal matrix D, the $|D|$ is simply the product of the elements along the diagonal.
- \triangleright Then $|A| = 0$, so the rank of A must be less than 3. Is there a 2×2 submatrix of A whose determinant is nonzero?

 \blacktriangleright The rank of an $m \times n$ matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

$$
\blacktriangleright \text{ Example: } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

- \triangleright We can show that for any diagonal matrix D, the $|D|$ is simply the product of the elements along the diagonal.
- \triangleright Then $|A| = 0$, so the rank of A must be less than 3. Is there a 2×2 submatrix of A whose determinant is nonzero?

KID KA KERKER E VOOR

 $\triangleright \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ is a 2 × 2 submatrix of A whose determinant is 1.

 \blacktriangleright The rank of an $m \times n$ matrix A is the size of the largest square submatrix of A whose determinant is nonzero.

$$
\blacktriangleright \text{ Example: } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

- \triangleright We can show that for any diagonal matrix D, the $|D|$ is simply the product of the elements along the diagonal.
- \triangleright Then $|A| = 0$, so the rank of A must be less than 3. Is there a 2×2 submatrix of A whose determinant is nonzero?

KID K 4 D K 4 B X 4 B X 1 B YOU ON ON

- $\triangleright \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ is a 2 × 2 submatrix of A whose determinant is 1.
- \blacktriangleright Therefore the rank of A is 2.

\triangleright What is the rank of the following matrix A? $A = \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix}$ \setminus

KO K K Ø K K E K K E K V K K K K K K K K K

\triangleright What is the rank of the following matrix A? $A = \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix}$ $\left\{\n \begin{array}{l}\n r_4 = r_4 - r_2; r_3 = r_3 + r_1 \\
\hline\n 0 & -7 & -1 & 12 \\
\hline\n 0 & 7 & 1 & -12\n \end{array}\n \right\}$ \setminus

\triangleright What is the rank of the following matrix A? $A = \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix}$ $\left\{\n \begin{array}{c}\n r_4=r_4-r_2; r_3=r_3+r_1 \\
\hline\n 0 & -7 & -1 & 12 \\
0 & 7 & 1 & -12\n \end{array}\n\right\}$ \setminus $\xrightarrow{r_4=r_4+r_3; r_2=r_2-3r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 7 & 1 & -12 \\ 0 & -7 & -1 & 12 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ \setminus

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

\triangleright What is the rank of the following matrix A? $A = \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix}$ $\left\{\n \begin{array}{c}\n r_4=r_4-r_2; r_3=r_3+r_1 \\
\hline\n 0 & -7 & -1 & 12 \\
0 & 7 & 1 & -12\n \end{array}\n\right\}$ \setminus $\xrightarrow{r_4=r_4+r_3; r_2=r_2-3r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \ 0 & 7 & 1 & -12 \ 0 & -7 & -1 & 12 \ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_3=r_3+r_2} \begin{pmatrix} 1 & -2 & 0 & 4 \ 0 & 7 & 1 & -12 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$ 0 0 0 0 \setminus

KOD KAR KED KED E YOUN

\triangleright What is the rank of the following matrix A? $A = \begin{pmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{pmatrix}$ $\left\{\n \begin{array}{c}\n r_4=r_4-r_2; r_3=r_3+r_1 \\
\hline\n 0 & -7 & -1 & 12 \\
0 & 7 & 1 & -12\n \end{array}\n\right\}$ \setminus $\xrightarrow{r_4=r_4+r_3; r_2=r_2-3r_1} \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 7 & 1 & -12 \\ 0 & -7 & -1 & 12 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\left\langle \begin{array}{c} r_3=r_3+r_2 \\ \longrightarrow \end{array} \right. \left(\begin{array}{cccc} 1 & -2 & 0 & 4 \\ 0 & 7 & 1 & -12 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$ \setminus \blacktriangleright So, the rank is 2.

KOD KAR KED KED E YOUN