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More Matrices

I A =
(
1 5 4 7

)
I B =


7
−4
2
3



I Is A · B defined?
I Yes. A has the same number of columns as B has rows.

I What is the order of A · B?
I It is 1× 1 (a scalar).

I Is B · A defined?
I Yes. B has the same number of columns as A has rows.

I What is the order of B · A?
I It is 4× 4.
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More Matrices

I Let A = (aij)m×p and B = (bij)p×n.

I Matrix multiplication algorithm to compute
C = (cij)m×n = A · B:

I for i = 1→ m do
for j = 1→ n do

cij = 0
for k = 1→ p do

cij = cij + aik · bkj
end for

end for
end for

I What is the computational complexity of this algorithm?
I There are m · n · p multiplications, and m · n · (p− 1) additions.
I Running time is O(m · n · p)
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More Matrices

I Am×p · Bp×q · Cq×n = Dm×n

I Matrix multiplication is associative.
I (A · B) · C = A · (B · C ) = D

I The order in which we do the multiplications can greatly
impact the running time in computing D.

I When calculating D, is it better to compute A · B or B · C
first?
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More Matrices

I If A is an n × n square matrix, then A2 = A · A is defined.

I A2 is also an n × n matrix, and so therefore A3 = A · A2 is
also defined.

I Inductively, we can see that Ac is defined for any integer
c ≥ 1.

I We define A0 to be In (the n × n identity matrix).
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More Matrices

I Given a matrix A, its transpose is obtained by rewriting rows
of A as columns.

I We denote the transpose of A as At .
I Example:

I A =
(
1 0 −4 5

)
I At =


1
0
−4
5


I Example:

I A =

(
1 2 3
4 5 6

)
I At =

1 4
2 5
3 6


I In general, A = (aij)m×n, At = (aji )n×m.
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More Matrices

I The main diagonal of A is the same as the main diagonal in
At .

I Elements that are not on the main diagonal of A will move to
the “other side” of the main diagonal in At .

I If A = At , then we say that A is a symmetric matrix.
I Example:

I

1 0 1
0 0 1
1 1 0

 is a symmetric matrix.

I If L is a lower triangular matrix of size n × n, then Lt is an
upper triangular matrix of size n × n and vice versa.
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More Matrices

I Determinants are defined for square matrices. It is a function
that assigns a scalar value to a square matrix.

I If A is a square matrix, then we denote the determinant |A| or
det(A).

I How to compute for a 2× 2 matrix:

I Let A =

(
a11 a12
a21 a22

)
I |A| = a11 · a22 − a12 · a21
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I How to compute determinant of a 3× 3 matrix:

I Let A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


I Write the first two columns again after the third column:

a11 a12 a13 | a11 a12
a21 a22 a23 | a21 a22
a31 a32 a33 | a31 a32
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I Consider the “downward diagonals”:
a11 a12 a13 | a11 a12
a21 a22 a23 | a21 a22
a31 a32 a33 | a31 a32

I Consider the “upward diagonals”:
a11 a12 a13 | a11 a12
a21 a22 a23 | a21 a22
a31 a32 a33 | a31 a32

I The determinant is the sum of the products of the downward
diagonals minus the sum of the products of the upward
diagonals. This is called Sarrus’ rule and only applies to
3× 3 matrices.

I |A| = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 −
a11a23a32 − a12a21a33
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More Matrices
I We can compute the determinant of an n × n matrix by using

the Laplace Expansion.

I Each element of an n × n matrix A has a minor Mij which is
the determinant of the submatrix obtained by removing row i
and column j from A.

I Example: Let A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

.

I M11 =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =

∣∣∣∣a22 a23
a32 a33

∣∣∣∣.
I The cofactor of aij is denoted Cij = (−1)i+jMij .

I Pick any row or any column. Suppose we pick row 1. The
determinant of A can be computed as
a11 · C11 + a12 · C12 + · · ·+ a1n · C1n.

I This works for any row or any column (no matter which row
or column we choose, we will get the same value).
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the Laplace Expansion.

I Each element of an n × n matrix A has a minor Mij which is
the determinant of the submatrix obtained by removing row i
and column j from A.

I Example: Let A =

a11 a12 a13
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a31 a32 a33
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I The cofactor of aij is denoted Cij = (−1)i+jMij .
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Exercise

I Compute determinant of A =

1 2 3
1 4 3
2 3 1



I Take the second row

I |A| = −1 ∗
∣∣∣∣2 3
3 1

∣∣∣∣+ 4 ∗
∣∣∣∣1 3
2 1

∣∣∣∣− 3 ∗
∣∣∣∣1 2
2 3

∣∣∣∣
I |A| = −10

I Can you calculate it by picking another row or column?
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More Matrices

I The rank of an m × n matrix A is the size of the largest
square submatrix of A whose determinant is nonzero.

I Example: A =

1 0 0
0 1 0
0 0 0

.

I We can show that for any diagonal matrix D, the |D| is simply
the product of the elements along the diagonal.

I Then |A| = 0, so the rank of A must be less than 3. Is there a
2× 2 submatrix of A whose determinant is nonzero?

I
(

1 0
0 1

)
is a 2× 2 submatrix of A whose determinant is 1.

I Therefore the rank of A is 2.
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Example

I What is the rank of the following matrix A?

I A =
( 1 −2 0 4

3 1 1 0
−1 −5 −1 8
3 8 2 −12

)

r4=r4−r2;r3=r3+r1−−−−−−−−−−−→
( 1 −2 0 4

3 1 1 0
0 −7 −1 12
0 7 1 −12

)
r4=r4+r3;r2=r2−3r1−−−−−−−−−−−−→

( 1 −2 0 4
0 7 1 −12
0 −7 −1 12
0 0 0 0

)
r3=r3+r2−−−−−→

( 1 −2 0 4
0 7 1 −12
0 0 0 0
0 0 0 0

)
I So, the rank is 2.
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