
 

 

 

 



Expanding the Bit Representation of a Number: 

One common operation is to convert between integers having different word sizes while retaining the 
same numeric value. Of course, this may not be possible when the destination data type is too small to 
represent the desired value. Converting from a smaller to a larger data type, however, should always be 
possible. 

 To convert an unsigned number to a larger data type, we can simply add leading zeros to the 
representation; this operation is known as zero extension 

 For converting a two’s-complement number to a larger data type, the rule is to perform a sign 
extension, adding copies of the most significant bit to the representation 

 

Apply this eqn below to solve the next problem 

 

Show that each of the following bit vectors is a two’s-complement representation 
of −4 

A. [1100] 
B. [11100] 
C. [111100] 
Observe that the second and third bit vectors can be derived from the first by sign 
extension. 

Unsigned Addition 

 

 



 

An arithmetic operation is said to overflow when the full integer result cannot 
fit within the word size limits of the data type 

 

When executing C programs, overflows are not signaled as errors. At times, 
however, we might wish to determine whether or not overflow has occurred. 

 

Fig: Relation between integer addition and unsigned addition. When x + y is greater than 2w − 1, the sum overflows. 

Example: 



 

For this example, the word size is 4 (you have 4 bits to represent your number). When you add 13 with 5, the result 
is 18, which is 5-bits in binary. The original result is 10010. But, you can’t fit it because we have only 4-bits 
allocated. Therefore, discard the MSB bit, now you get 0010 which is 2. If you do modular arithmetic => sum 
modulus 2w, then 18 modulus 16 is 2 too.  

Learn more about modular arithmetic https://en.wikipedia.org/wiki/Modular_arithmetic 

Signed Addition 

https://en.wikipedia.org/wiki/Modular_arithmetic


 

 

Positive Overflow: 

When the sum x + y exceeds TMaxw , we say that positive overflow has occurred. In this case, the effect of 
truncation is to subtract 2w  from the sum.  
 
So, you can see that you can add 7 with 5, the original sum will be 12. But you cannot represent 12 with 4-bits. 
Therefore you do truncation, discard one bit, then you get 1100, 1100 means -4. Here, -4 is your truncated sum and 
this is a case of positive overflow. Here, you can explain the truncated sum by applying this formula below: 
 Original sum – 2w 

 
 
 
 

 
 
 
 
 
 
When you add two positive numbers, but get a negative result, that’s a positive overflow. 



Negative Overflow: 
 
When the sum x + y is less than TMinw , we say that negative overflow has occurred. In this case, the effect of 
truncation is to add 2w  to the sum. 
 

 
 
Here, the original sum is -9. But, you cannot represent -9 with 4-bits. Therefore, we truncate one bit and we get 0111 
as our result. But, 0111 means 7. If you add original sum with 2w, then you get the truncated sum. 
 
When you add two negative numbers, but get a positive result, that’s a negative overflow 
 
***Show that bit-level representation is same for signed and unsigned addition, even though the values are 
different. 
 

 
For this example, you can see that the truncated sum is 2, this result is correct when you consider that for signed. If 
you try to interpret this result as unsigned, then the original sum is 10010, which is 18. And 18 modulo 2w is 2. Here, 
2 is the truncated sum for unsigned addition. But, again the bit-level representation are same, but the 
value/interpretation are different for signed and unsigned. 

 
 



 

 

 
 
The w-bit two’s-complement sum of two numbers has the exact same bit-level 
representation as the unsigned sum. In fact, most computers use the same machine 
instruction to perform either unsigned or signed addition 
 
 
Unsigned Multiplication 
 
 

 

 
 
 
 
 
 
 



 
Here, you are multiplying 5 with 5, and the original result is 25. But, you can cannot represent 25 with 4-bits. We 
are only considering the lower 4-bits, and that’s 1001. The truncated result is 9. If you do original result mod 2w, 
then you will get 9.  
 
Signed Multiplication 
 

 
 
We claim that the bit-level representation of the product operation is identical 
for both unsigned and two’s-complement multiplication 
 



 
Three-bit unsigned and two’s-complement multiplication examples. 
Although the bit-level representations of the full products may differ, those of the 
truncated products are identical. 
 
 
Multiplying by Constants 
 
Historically, the integer multiply instruction on many machines was fairly slow, 
requiring 10 or more clock cycles, whereas other integer operations—such as 
addition, subtraction, bit-level operations, and shifting—required only 1 clock 
cycle. Even on the Intel Core i7 Haswell we use as our reference machine, integer 
multiply requires 3 clock cycles. As a consequence, one important optimization 
used by compilers is to attempt to replace multiplications by constant factors with 
combinations of shift and addition operations. 
 

 
shifting a value left is equivalent to performing unsigned multiplication by a power of 2 
 

 
 



 
 
 
Dividing by Powers of 2 
 
Integer division on most machines is even slower than integer multiplication— 
requiring 30 or more clock cycles. Dividing by a power of 2 can also be performed 
using shift operations, but we use a right shift rather than a left shift. The two 
different right shifts—logical and arithmetic—serve this purpose for unsigned and 
two’s-complement numbers, respectively. 
 
The case for using shifts with unsigned arithmetic is straightforward, in part 
because right shifting is guaranteed to be performed logically for unsigned values. 
 

 

 
Dividing unsigned numbers by powers of 2. The examples illustrate 
how performing a logical right shift by k has the same effect as dividing by 2k and then 
rounding toward zero. 
 
examples show the effects of performing logical right shifts 
on a 16-bit representation of 12,340 to perform division by 1, 2, 16, and 256. The 
zeros shifted in from the left are shown in italics.We also show the result we would 
obtain if we did these divisions with real arithmetic. These examples show that the 
result of shifting consistently rounds toward zero, as is the convention for integer 
division. 
 
 
 
 
 



Two’s complement division : arithmetic right shift 
 
 
 
 

 
 
**** Pick up different integers, and perform addition/multiplication/division etc. , both for signed and 
unsigned. 
 
 
 
 
 


