
Fifth Lecture

Topics: Queues and Linked Lists

Topics

• LinkedList

• Making a LinkedList

• LinkedList (Types)

• LinkedList (Operations)

• Traversing

• Insertion

• Deletion

• Searching

• Pointer to Pointer (Example)

• LinkedList (Complete Code)

• Advantages and disadvantages

• Applications

• LinkedList (Memory)

LinkedList

• A linked list is a linear data structure, in which the elements are not stored at contiguous memory locations.
The elements in a linked list are linked using pointers as shown in the below images:

• Node Structure: A node in a linked list typically consists of two components:
• Data: It holds the actual value or data associated with the node.
• Next Pointer: It stores the memory address (reference) of the next node in the sequence.

• Head and Tail: The linked list is accessed through the head node, which points to the first node in the list. The last
node in the list points to NULL or nullptr, indicating the end of the list. This node is known as the tail node.

Making a LinkedList

• A linked list is made up of many nodes which are connected in nature. Every node is mainly divided into two parts,
one part holds the data and the other part is connected to a different node

• In C, we achieve this functionality by using structures and pointers. Each structure represents a node having some
data and also a pointer to another structure of the same kind. This pointer holds the address of the next node and
creates the link between two nodes. So, the structure is something like:

#include <stdio.h>
#include <stdlib.h>

struct node
{

int data;
struct node *next;

};

LinkedList

LinkedList

• What if we do not create a Head node?

LinkedList

1. Will there be an error
2. Will compile but will not output values or addresses
3. Only warning but will compile without any output
4. Will run without warning and will display output

LinkedList (Types)
1. Single-linked list: Traversal of items can be done in the forward direction only due to the linking of every node

to its next node.

• Operations: Insertion (start, end or specific location of list), Deletion (start, end or specific node), search,
and display

2. Double linked list: Traversal of items can be done in both forward and backward directions as every node
contains an additional prev pointer that points to the previous node.

• Operations: Insertion (start, end, after or before a node or specific location of list), Deletion (start, end or
specific node), and display.

3. Circular linked list: A circular linked list is a type of linked list in which the first and the last nodes are also
connected to each other to form a circle, there is no NULL at the end.

• Operations: Insertion (empty list, start, end, or between nodes of list), Deletion (start, end or specific node),
and display.

LinkedList

• It is basically chains of nodes, each node contains information such as data and a pointer to
the next node in the chain.

• In the linked list there is a head pointer, which points to the first element of the linked list,
and if the list is empty then it simply points to null or nothing.

Linkedlist Array

Not stored in a Contiguous location Stored in Contiguous location

Dynamic size Fixed size

Memory allocation on run time Memory allocation on compile time

Use more memory then array Use less memory then LinkedList

Access require traversing Easy access to elements

Insertion & deletion fast Insertion & deletion slow

LinkedList (Operations)

• Traversing: To traverse all nodes one by one.

• Insertion: To insert new nodes at specific positions.

• Deletion: To delete nodes from specific positions.

• Searching: To search for an element from the linked list.

LinkedList (Operations - Traversing)

• We can use the NULL (pointer) to identify that we have reached the end of the LinkedList.

Not equal (!=)

Code from slide 8

LinkedList (Operations - Insert at the beginning & End)

• Insert at the beginning

1. Allocate memory for new node

2. Store data

3. Change next of new node to point to head

4. Change head to point to recently created node

The function that adds at the front of the list is push().

The push() must receive a pointer to the head pointer, because push must change
the head pointer to point to the new node

LinkedList (Operations - Insert at the beginning & End)

LinkedList (Operations - Insert at the beginning & End)

• Insert at the End

1. Allocate memory for new node

2. Store data

3. Traverse to last node

4. Change next of last node to recently created node

Since a Linked List is typically represented by the head of it, we have to traverse the
list till the end and then change the next to last node to a new node.

LinkedList (Operations - Insert at the beginning & End)

LinkedList (Operations - Insert at the Middle)

• Insert at the Middle

1. Allocate memory and store data for new node

2. Traverse to node just before the required position of new node

3. Change next pointers to include new node in between

LinkedList (Operations - Insert at the Middle)

LinkedList (Operations - Deletion)

1. Delete from Beginning:

• Point head to the next node i.e. second node

• temp = head

• head = head->next

• Make sure to free unused memory

• free(temp); or delete temp;

LinkedList (Operations - Deletion)

2. Delete from End:
• Point head to the previous element i.e. last second element
• Change next pointer to null
• struct node *end = head;
• struct node *prev = NULL;
• while(end->next)
• {
• prev = end;
• end = end->next;
• }
• prev->next = NULL;
•

• Make sure to free unused memory
• free(end); or delete end;

LinkedList (Operations - Deletion)
3. Delete from any location:
• Keeps track of pointer before node to delete and pointer to node to delete
• temp = head;
• prev = head;
• for(int i = 0; i < position; i++)
• {
• if(i == 0 && position == 1)
• head = head->next;
• free(temp)
• else
• {
• if (i == position - 1 && temp)
• {
• prev->next = temp->next;
• free(temp);
• }
• else
• {
• prev = temp;
• if(prev == NULL) // position was greater than number of nodes in the list
• break;
• temp = temp->next;
• } } }

LinkedList (Operations - Deletion)
Remaining code for slides 19, 20 & 21

LinkedList (Operations - Searching)

• You can search an element on a linked list using a loop. We are finding item on a linked list:

1. Make head as the current node.

2. Run a loop until the current node is NULL because the last element points to NULL.

3. In each iteration, check if the key of the node is equal to item. If it the key matches the item, return true
otherwise return false.

Pointer to Pointer (Example)

Pointer to Pointer (Example)

Additional Source: Link

https://www.programiz.com/c-programming/c-pointers

LinkedList (Complete Code)
Insert at Beginning & End, Deletion & Searching based on Key value

LinkedList (Complete Code)
Insert at Beginning & End, Deletion & Searching based on Key value

LinkedList (Complete Code)
Insert at Beginning & End, Deletion & Searching based on Key value

LinkedList (Complete Code)
Insert at Beginning & End, Deletion & Searching based on Key value

Changes in :
• Line 88
• Line 92
• Line 95

LinkedList (Complete Code)
Insert at Beginning & End, Deletion & Searching based on Key value

LinkedList

• Advantages:

• Dynamic nature: Linked lists are used for dynamic memory allocation.

• Memory efficient: Memory consumption of a linked list is efficient as its size can grow or shrink dynamically
according to our requirements, which means effective memory utilization hence, no memory wastage.

• Ease of Insertion and Deletion: Insertion and deletion of nodes are easily implemented in a linked list at any
position.

• Implementation: For the implementation of stacks and queues and for the representation of trees and
graphs.

• The linked list can be expanded in constant time.

• Disadvantages:

• Memory usage: The use of pointers is more in linked lists hence, complex and requires more memory.

• Accessing a node: Random access is not possible due to dynamic memory allocation.

• Search operation costly: Searching for an element is costly and requires O(n) time complexity.

• Traversing in reverse order: Traversing is more time-consuming and reverse traversing is not possible in singly
linked lists.

LinkedList (Applications)

• Linear data structures such as stack, queue, and non-linear data structures such as hash maps,
and graphs can be implemented using linked lists.

• In web browsers and editors, doubly linked lists can be used to build a forwards and backward
navigation button.

• A circular doubly linked list can also be used for implementing data structures like Fibonacci
heaps.

• Switching between two applications is carried out by using “alt+tab” in windows and
“cmd+tab” in mac book. It requires the functionality of a circular linked list.

LinkedList (Memory)

• Should we use malloc or calloc?

• What's is the difference between them?

• Malloc is used for dynamic memory allocation and is useful when you don't know the
amount of memory needed during compile time. Allocating memory allows objects to exist
beyond the scope of the current block.

• The name "calloc" stands for contiguous allocation. The malloc() function allocates
memory and leaves the memory uninitialized, whereas the calloc() function allocates
memory and initializes all bits to zero.

LinkedList (Memory)

• Malloc is used for dynamic memory allocation and is useful when you don't know the amount of memory
needed during compile time.

• Linked List relies heavily on the malloc() function to allocate some memory for new nodes dynamically.
• The reason why we need to use the temporary variable is that we don't want to change the address stored in the

head pointer.
• malloc p = malloc(n) - allocates n bytes of *heap memory; the memory contents remain uninitialized.
• calloc p = calloc(count, size) allocates count*size bytes of heap memory and initializes it all to zero; this call

is appropriate when you want to allocate an array of count items, each of size bytes.

*Heaps are memory areas allocated to each program. Memory allocated to heaps can be dynamically allocated,
unlike memory allocated to stacks. As a result, the heap segment can be requested and released whenever the
program needs it.

