CS 2124: DATA STRUCTURES
Spring 2024

Fifth Lecture
Topics: Linked Lists

Topics

* LinkedList

* Making a LinkedList

* LinkedList (Types)

* LinkedList (Operations)
* Traversing
* Insertion

* Deletion
e Searching

* Pointer to Pointer (Example)

* LinkedList (Complete Code)
* Advantages and disadvantages
* Applications
* LinkedList (Memory)

LinkedList

* A linked list is a linear data structure, in which the elements are not stored at contiguous memory locations.
The elements in a linked list are linked using pointers as shown in the below images:

v

))) -

* Node Structure: A node in a linked list typically consists of two components:
* Data: It holds the actual value or data associated with the node.
* Next Pointer: It stores the memory address (reference) of the next node in the sequence.
* Head and Tail: The linked list is accessed through the head node, which points to the first node in the list. The last
node in the list points to NULL or nullptr, indicating the end of the list. This node is known as the tail node.

Making a LinkedList

* A linked list is made up of many nodes which are connected in nature. Every node is mainly divided into two parts,
one part holds the data and the other part is connected to a different node

* In C, we achieve this functionality by using structures and pointers. Each structure represents a node having some
data and also a pointer to another structure of the same kind. This pointer holds the address of the next node and
creates the link between two nodes. So, the structure is something like:

#include <stdio.h> int
#tinclude <stdlib.h> data 1 idata 2
data
struct node node
{ int dat Eddnrgsxé of NULL
INT Adata, t d
struct node *next: il b Node 1 Node 2 Node 3 Node 4

I

LinkedList

1 int
sl | data

3 Fa ,"_‘:."_“. -‘.: ad Noae ' ————
4 struct nade { node

5 int value; "next

£ struct node *next; qogloseol
- ? next node

1nt maln() {
struct
struct
struct
struct

Struct node Tour ' Node 1 Node 2 Node 3 Node 4

one (struct node));

two (struct node));

three (struct node));
(struct node));

. . ;o . f
/ a1t Fhe = i el = -k -
Y |3 P | Fl B o { \

= | REU LisLl

w M = ®

vald pr1ntL1nked115t(5truﬁt nade

value, &p->value);

w3 T W g O

one- >next
two- >next three;

three->next four;
four- >next H

® WO 00

A RFTRAa R "l"..‘--'.-'-""

IO L Ly LS LS

("<Name, abc123, SP24>\n");
head one;
printLinkedlist(head);

O Y N Y

LW
gt

LinkedList

int
data
! creatin g a hod
struct node node
int value; S
struct node address of
next node

0

e What if we do not create a Head node?

int main() {
struct node
struct node

struct node : Node 1 Node 2 Node 3 Node 4

struct node

At ha [apbad e+ vwal e B AAdAAR
e LLAIREW LLal VULUWE & UUUI

fALLocate memory

one (struct node));
two (struct node));
three ((struct node));
four ((struct node));

void pfintLinkedlist(struct node

value, &p->value);

Connect noades

one- >next two;
two- >next three;
three->next
four->next H

Il wn B wpr =2

T N Tals g L ;_.-. E

("<Name, abc123, SP24>\n");
printLinkedlist(one);

struct node {
int value;
struct node

}s

next;

void printLinkedlist(struct node

(p) {
("Value: ,

p->next;

Add:

p
}}

p)

{

» p->value,

p

value);

int main

struct
struct
struct
struct
struct

one
two
three
four

one- >V
two->v
three
four

one
two
three
four

head

0O {

node
node
node
node
node

alue

alue
value

value

next
next

next
next

("<Name, abcl23,

one;

head;
one
two
three
four

(

[
E
[
E
L]
>

kS

two;
three;

four;

L]
>

L]
>

L]
>

(struct node));

(struct node));
(struct node));
(struct node));

SP24>\n");

printLinkedlist(head);

LinkedList (Types)

1. Single-linked list: Traversal of items can be done in the forward direction only due to the linking of every node
to its next node.

» Operations: Insertion (start, end or specific location of list), Deletion (start, end or specific node), search,
and display
2. Double linked list: Traversal of items can be done in both forward and backward directions as every node
contains an additional prev pointer that points to the previous node.
* Operations: Insertion (start, end, after or before a node or specific location of list), Deletion (start, end or
specific node), and display.
3. Circular linked list: A circular linked list is a type of linked list in which the first and the last nodes are also
connected to each other to form a circle, there is no NULL at the end.

» Operations: Insertion (empty list, start, end, or between nodes of list), Deletion (start, end or specific node),
and display.

HEAD —>
NULL

prev l data

next prev L data

next prev

data [next }—b NULL

! ! !
Node Node Node

LinkedList

* It is basically chains of nodes, each node contains information such as data and a pointer to
the next node in the chain.

* In the linked list there is a head pointer, which points to the first element of the linked list,
and if the list is empty then it simply points to null or nothing.

Linkedlist Array
Not stored in a Contiguous location Stored in Contiguous location
Dynamic size Fixed size
Memory allocation on run time Memory allocation on compile time
Use more memory then array Use less memory then LinkedList
Access require traversing Easy access to elements

Insertion & deletion fast Insertion & deletion slow

LinkedList (Operations)

* Traversing: To traverse all nodes one by one.

* Insertion: To insert new nodes at specific positions.

* Deletion: To delete nodes from specific positions.

* Searching: To search for an element from the linked list.

head tail head 3/vtx tail

LinkedList (Operations - Traversing)

* We can use the NULL (pointer) to identify that we have reached the end of the LinkedList.

int main() {
Code from slide 8
struct node
struct node
struct node
struct node H
struct node H

void printLinkedlist(struct node *p) {
(p) {

("Value: , Add: ", p->value, &p->value);

p- >next;
("Next Add: RS one ((struct node));
two ((struct node));

three ((struct node));

} }

four ((struct node));

one- >next two;
two- >next three;
three->next four;
four- >next H

("<Name, abc123, SP24>\n");
head one;
printLinkedlist(head);

Not equal (!=)

LinkedList (Operations - Insert at the beginning & End)

* Insert at the beginning
1. Allocate memory for new node
2. Store data
3. Change next of new node to point to head

I'l.

4. Change head to point to recently created node

A |-
=] O un

The function that adds at the front of the list is push().

3 I 3

The push() must receive a pointer to the head pointer, because push must change
the head pointer to point to the new node

2]
2]
2]
2]
2]

Head

A _)‘ o _)‘ C —)‘ D — nuL

Data Next

* ® WO W

int main()

append(head

'I' T P'i'l' :__,

push(head,

(”Created Linked list:

printList(head);
}

")

LinkedList (Operations - Insert at the beginning & End)

int main()

{

struct Node

struct Node

{

int data;
struct Node *“next;

};

head

)

append (&head,

push(&head, ©);
("Created Linked list:\n ");

printList(head);

¥

void push(struct Node** head_ref, int new_data)

{

struct Node® new_node
(struct Node*) ((struct Node));

new_node->data = new_data;

new_node->next = (*head_ref);

(*head_ref) = new_node;

LinkedList (Operations - Insert at the beginning & End)

int main()

* Insert at the End
1. Allocate memory for new node

e

""'H'" WL -II-:_.-.

=] O N

QY

struct che head
Store data o 2->

=
=
(%
d
(%
(%
;

-
P
&
-
%

append(head ;

2
3. Traverse to last node
4. Change next of last node to recently created node 112 push(head

'I' o P" e A7 =-%2 s M |
o .

Sincg a Linked List is typically represented by the head of it, we have to traverse the __ append(head
list till the end and then change the next to last node to a new node. 115 (”Created Linked list:\n ");
116 printList(head);

Head

A -—-)‘ B --)‘ C —3| D -..)liy(g

Data Next
tmp
E ﬁ NULL

LinkedList (Operations - Insert at the beginning & End)

void append(struct Node** head_ref,
int new_data)

{

struct Node* new_node
(struct Node*) (

struct Node *last head_ref;

new_node->data = new_data;

new_node- >next

(*head_ref)
{

head_ref = new_node;

}

»

(last->next
last last->next;

last->next = new_node;

»

(struct Node));

int main()

{

struct Node* head
append(&head, 2);
push(&head, ©);
append(&head, 2);
("Created Linked list:\n ");

printList(head);
)i

LinkedList (Operations - Insert at the Middle)

int main()

* Insert at the Middle {

1. Allocate memory and store data for new node
2. Traverse to node just before the required position of new node
3. Change next pointers to include new node in between

® W Co

I'I.

.|......|. _..'
L

=

Y

+ Y I - I - 9 I + Y
=l h v b WK PR

1nsertﬁfter(head
("Created Linked list: “3;
printList(head);

-|- |
O 0 O 0 00 OO0 O ® WO W

.ll
A ® W 0o

JHead
A —)‘ - C —)‘ -) NULL
Data Next)r
tmp

LinkedList (Operations - Insert at the Middle)

int main()
void insertAfter(struct Node* prev_node,int new_data) {

{
struct Node® head

(prev_node)
{ append(&head, 2);

("the given previous node cannot be NULL");
: push(&head, 9);
}

insertAfter(head, 1);

struct Node® new_node intf("Created Linked list:\n ");
(struct Node*) ((struct Node)); printList(head);
}

new_node->data = new_data;

new_node->next = prev_node->next;

prev_node->next = new_node;

LinkedList (Operations - Deletion)

1. Delete from Beginning: %"t main()
* Point head to the next node i.e. second node Node* list
. temp = head list->next
* head = head->next Push(2list, 15);

* Make sure to free unused memory

Push(&list,);

free(temp); or delete temp;

printList(list);
deleteN(&list, 1);

("After Deletion:
printList(list);

LinkedList (Operations - Deletion)

int main()

W o

2. Delete from End:

printList(list);

49 - {

* Point head to the previous element i.e. last second element B Node* list
. Change next pointer to null 51 list '_"E”Kt
. 3 _ . 59 Create

struct node *end = head; - Push(115t
. struct node *prev = NULL; 54 Create
. while(end->next) 55 Push(llst
. { - end: 57 pr1ntL15t(115t)

prev =end; 58 deleteN(list, 3);

. end = end->next; 59 Delete Last node of
. } 6 ("After Deletion:

1

. prev->next = NULL;

 Make sure to free unused memory
. free(end); or delete end;

LinkedList (Operations - Deletion)

3. Delete from any location:
* Keeps track of pointer before node to delete and pointer to node to delete

int main()

) temp = head; 50 Node* list

. prev = head; 51 115t next

. for(int i =0; i < position; i++) 55 /Create nod

* { 53 Push(115t

. if(i == 0 && position == 1) 54 reate nod

. head = head->next; :' Push(115t

. free(temp) °° eate n

. else ;_

) { Delete a noa
. if (i == position - 1 && temp) 6 (”A-Fter* Deletmn
. { 6 printList(list);

. prev->next = temp->next; g

. free(temp);

. }

. else

. {

. prev = temp;

. if(prev == NULL) // position was greater than number of nodes in the list

. break;

. temp = temp->next;

. boor o

LinkedList (Operations - Deletion)

Remaining code for slides 19, 20 & 21

void deleteN(Node
16 - {

17 Node* temp;
18 Node* prev;
19 temp head;

head, int position)

[I

L

typedef struct Node {

L

head head- >next;

] O N B

temp temp- >next;

("\n");

4 int number; 20 prev head;

> struct Node* next; 21 (int 1 ; 1 < position; i++) {

& } Node; 22 (1 position) {

7 void Push(Node** head, int A) 23 head = (*head)->next;

8- 1{ 24 (temp);

9 Node* n ((Node)); 25 }

10 n->number = A; 26 {

11 n->next head; 27 (1 position temp) {
12 head n; 28 prev->next temp- >next;

29 (temp);

28 void printList(Node* head) ii } {
o while (head) { Doy = SO e greater than
41 ("Data:%d [%p]-> “, head->number, head, -, P e s PO P
42 head- >next); 2 thr;;' N "fS' | -

[0 T W g e =4

(o4]
—
—
—
—

LinkedList (Operations - Searching)

* You can search an element on a linked list using a loop. We are finding item on a linked list:
1. Make head as the current node.
2. Run aloop until the current node is NULL because the last element points to NULL.

3. Ineachiteration, check if the key of the node is equal to item. If it the key matches the item, return true
otherwise return false.

Pointer to Pointer to actual variable
pointer of var var with a value
ptr2 ptri var
4020 2008 10
#3096 — #4020 —#2008
address of address of address of

pointer pt2 pointer ptl var

Pointer to Pointer (Example)

int main()

{

int var

int* ptr2;

int** ptri;
ptr2 var;

ptrl ptr2;

("Value of var = , var);
("Value of var using single pointer
("Value of var using double pointer
("Add of var = ATET)

("Add of var using single pointer
("Add of var using double pointer

Pointer to Pointer (Example)

int main()

{

int var

int* ptr2;

int** ptril;

ptr2 var;

ptrl ptr2;

("Value of var , var);
("Value of var using single pointer
("Value of var using double pointer
("Add of var = ", &var);

("Add of var using single pointer
("Add of var using double pointer
("Add of single pointer "

"Add of double pointer
(: Additional Source: Link

https://www.programiz.com/c-programming/c-pointers

LinkedList (complete Code)

Insert at Beginning & End, Deletion & Searching based on Key value

[

w

38 '/ Insert the the crf'
B Create a node 31 vold insertAtEnd(struct Node** head_ref, int new_data) {
> str'uct Node { 32 struct Node* new_node = (struct Node*) ((struct Node));
6 int data; 33 struct Node* last head_ref; /* used in step 5*/
7 struct Node® next; 34 new_node- >data = new_data;
8 }i 35 new_node- >next ;
g !/ Insert gt the .-‘.:ﬁ‘. nn .-‘" 36 (head_r‘ef) {
10 vold 1nser‘tAtBeg1nn1ng(str‘uct Node** head_ref, int new_data) { 37 head_ref = new_node;
11 // Allocate memory to a node 38 ;
p) struct Node* new_ node (struct Node*) ((struct Node)); 39 }
3 // insert the data 46 (last->next) last = last->next;
14 new_ _node- >data new_data; 41 last->next = new_node;
5 mew_ node next = (*head_ref); 42 H
16 Move head to new node 43}
17 (head _ref) = new_node; 44 // Delete a node)
18} 45 v01d deleteNode(str‘uct Node** head_ref, int key) {
19 // Insert a node after a node 46 struct Node *“temp head_ref, “prev;
20 void 1nsertA'Fter(struct Node* prev_node, int new_data) { 48 s e en key) {
=L [Fre i) 1 49 head_ref = temp->next;
22 ("the given previous node cannot be NULL"); =€ (Eemp)' ?
- ; 51 ;
24 } 52 }
25 struct Node* new_node (struct Node*) ((struct Node)); 53 B e T e e e
26 new_node->data = new_data; 54 (temp ' temp- >data key) {
27 new_node->next = prev_node->next; 55 prev = temp;
28 prev_node->next new_node; 56 temp - temp->next;
29 } 7 3

LinkedList (complete Code)

Insert at Beginning & End, Deletion & Searching based on Key value

58 If the key 1s not present 81 // Driver program

59 (t) H 82 int main() {

60 / =f¢:;f the node 83 struct Node® head H

61 prev->next = temp->next; 84 insertAtEnd(&head, 1);

62 (temp); 85 insertAtBeginning(&head, 2);

63 } 86 insertAtBeginning(&head, 3);

64 // Search a node 87 insertAtEnd(&head, 4);

65 - int searchNode(struct Node** head_ref, int key) { 88 insertAfter(head->next, 5);

66 struct Node* current head_ref; 89 ("Linked list: ");

67 90 printList(head);

68 (current) { 91 ("\nAfter deleting an element (3): ");
69 (current- >data key) 5 92 deleteNode(Zhead, 3);

70 current = current->next; 93 printList(head);

71 } 94 ("\nSearch element (3): ");

72 ; 95 int item_to_find H

73 '} 96 (searchNode(&head, item_to_find)) {
74 // Print the Llinked Llist 97 (" is found"”, item_to_find);
75 - void printList(struct Node* node) { 98 } {

76 (node) { 99 (" is not found”, item_to_find);
77 (" ", node->data); 100 }

78 node = node->next; 101 printList(head);

79 } 102 }

g0 }

LinkedList (complete Code)

Insert at Beginning & End, Deletion & Searching based on Key value

int main() {
struct Node® head
insertAtEnd(&head, 1);
insertAtBeginning(&head,
insertAtBeginning(&head,
insertAtEnd(&head, 4);
insertAfter(head- >next,
("Linked list: ");
printList(head);
("\nAfter deleting an element (3): ");
deleteNode(Zhead, 2);
printList(head);
("\nSearch element (3): ");
int item_to find 3
(searchNode(&head, item to find)) {
(" is found”, item_to_find);

}

}
printList(head);

(" is not found", item to_find);

LinkedList (complete Code)

Insert at Beginning & End, Deletion & Searching based on Key value

int main() { Cha!wges in:
struct Node* head * Line 88
insertAtEnd(&head, 1); e Line 92
insertAtBeginning(&head, .
* Line 95

insertAtBeginning(&head,
insertAtEnd(&head, 4);
insertAfter(head, 5);
("Linked list: ");
printList(head);
("\nAfter deleting an element (4): ");

deleteNode(&head, 4);
printList(head);
("\nSearch element (4): ");
int item_to_find H
(searchNode(&head, item to find)) {
(" is found”, item to find);

}

}
printList(head);

(" is not found”, item to_find);

LinkedList (complete Code)

Insert at Beginning & End, Deletion & Searching based on Key value

int main() {
struct Node* head
insertAtEnd(&head, 1);
insertAtBeginning(&head,
insertAtBeginning(&head,
insertAtEnd(&head, 4);
insertAfter(head, 5);
("Linked list: ");
printList(head);
("\nAfter deleting an element (4): ");
deleteNode(&head, 4);
printList(head);
("\nSearch element (4): ");
int item_to_find H
(searchNode(&head, item to find)) {
(" is found”, item to find);

}

}
printList(head);

(" is not found”, item to_find);

LinkedList

* Advantages:
* Dynamic nature: Linked lists are used for dynamic memory allocation.

* Memory efficient: Memory consumption of a linked list is efficient as its size can grow or shrink dynamically
according to our requirements, which means effective memory utilization hence, no memory wastage.

* Ease of Insertion and Deletion: Insertion and deletion of nodes are easily implemented in a linked list at any
position.

* Implementation: For the implementation of stacks and queues and for the representation of trees and
graphs.

* The linked list can be expanded in constant time.

e Disadvantages:
 Memory usage: The use of pointers is more in linked lists hence, complex and requires more memory.

* Accessing a node: Random access is not possible due to dynamic memory allocation.
» Search operation costly: Searching for an element is costly and requires O(n) time complexity.

* Traversing in reverse order: Traversing is more time-consuming and reverse traversing is not possible in singly
linked lists.

LinkedList (Applications)

Image Viewer

* Linear data structures such as stack, queue, and non-linear data structures such as hash maps,
and graphs can be implemented using linked lists.

* In web browsers and editors, doubly linked lists can be used to build a forwards and backward
navigation button.

e A circular doubly linked list can also be used for implementing data structures like Fibonacci
heaps.

e Switching between two applications is carried out by using “alt+tab” in windows and
“cmd+tab” in mac book. It requires the functionality of a circular linked list.

LinkedList (Memory)

Should we use malloc or calloc?

What's is the difference between them?

Malloc is used for dynamic memory allocation and is useful when you don't know the
amount of memory needed during compile time. Allocating memory allows objects to exist
beyond the scope of the current block.

The name "calloc" stands for contiguous allocation. The malloc() function allocates
memory and leaves the memory uninitialized, whereas the calloc() function allocates
memory and initializes all bits to zero.

LinkedList (Memory)

 Malloc is used for dynamic memory allocation and is useful when you don't know the amount of memory
needed during compile time.
* Linked List relies heavily on the malloc() function to allocate some memory for new nodes dynamically.
 The reason why we need to use the temporary variable is that we don't want to change the address stored in the
head pointer.
 malloc p = malloc(n) - allocates n bytes of *heap memory; the memory contents remain uninitialized.
e calloc p = calloc(count, size) allocates count*size bytes of heap memory and initializes it all to zero; this call
is appropriate when you want to allocate an array of count items, each of size bytes.

*Heaps are memory areas allocated to each program. Memory allocated to heaps can be dynamically allocated,
unlike memory allocated to stacks. As a result, the heap segment can be requested and released whenever the
program needs it.

