#show link: set text(blue) #set text(font: "Calibri") #show raw: set text(font: "Fira Code") #set table.cell(breakable: false) #set table(stroke: (x, y) => ( left: if x > 0 { .1pt }, top: if y == 1 { 0.5pt } else if y > 1 { 0.1pt }, )) #set math.mat(delim: "[") #set page(margin: (x: .5in, y: .5in)) #let solve(solution) = { block( inset: 10pt, stroke: blue + .3pt, fill: rgb(0, 149, 255, 15%), radius: 4pt, )[#solution] } #let solvein(solution) = { let outset = 3pt h(outset) box( outset: outset, stroke: blue + .3pt, fill: rgb(0, 149, 255, 15%), radius: 4pt, )[#solution] } #let note(content) = { block( outset: 5pt, inset: 10pt, stroke: luma(20%) + .3pt, fill: luma(95%), radius: 4pt, )[#content] } #let notein(content) = { let outset = 3pt h(outset) box( outset: outset, stroke: luma(20%) + .3pt, fill: luma(95%), radius: 4pt, )[#content] } #align(center)[ = CS 3333 Mathematical Foundations Homework 4 (100 points)\ #underline[Price Hiller] | #underline[zfp106] ] #line(length: 100%, stroke: .25pt) *Submission:*\ Same as HW1. *Questions*\ Please write down the major intermediate steps. 1. Calculate the sum of two matrices if it is defined. (10 pts) #enum( numbering: "(a)", tight: false, number-align: start + top, [ (5 pts) $mat( 5, 7, -2; 6, 0, 5; 0, 4, 1; ) + mat( 3, 0, 4; -5, -6, 8; 7, 9, 0 ) =$ #note[ $mat( 5, 7, -2; 6, 0, 5; 0, 4, 1; ) + mat( 3, 0, 4; -5, -6, 8; 7, 9, 0 ) &= mat(5 + 3, 7 + 0, 4 + (-2);6 + (-5), 0 + (-6), 5 + 8; 0 + 7, 4 + 9, 1 + 0;)\ &= #solve[$mat(8, 7, 2; 1, -6, 13; 7, 13, 1;)$]$ ] ], [ (5 pts) $mat( 2, 0, 7; 9, 5, 6; 8, 4, 0; ) + mat( 6, 1; 4, 7; 0, 5; ) =$ #solve[The addition is *not defined*. The first matrix is of order $3×3$ whereas the order of the second matrix is of order $3×2$.] ], ) 2. Calculate $A*B$ if it is defined. (25 pts)\ #enum( numbering: "(a)", tight: false, number-align: start + top, [ (5 pts) $A = 8$, $B = mat( 7, 0, -2, 4; -6, 1, -3, 5; )$ #note[$ "AB" &= 8 mat( 7, 0, -2, 4; -6, 1, -3, 5; )\ "AB" &= mat( 8 ⋅ 7, 8 ⋅ 0, 8 ⋅ -2, 8 ⋅ 4; 8 ⋅ -6, 8 ⋅ 1, 8 ⋅ -3, 8 ⋅ 5; )\ "AB" &= #solve[$mat( 56&, 0&, -16&, 32&; -48&, 8&, -24&, 40&; )$] $] ], [ (10 pts) $A = mat(7, 0, -2, 4; -6, 1, -3, 5;)$ $B = mat(-1, 6; -4, 4; 5, 8; 0, -7;)$ #note[ $ "AB" &= mat(7, 0, -2, 4; -6, 1, -3, 5;) × mat(-1, 6; -4, 4; 5, 8; 0, -7;)\ "AB" &= mat( ((7 * -1) + (0 * -4) + (-2 * 5) + (4 * 0)), ((7 * 6) + (0 * 4) + (-2 * 8) + (4 * -7)); ((-6 * -1) + (1 * -4) + (-3 * 5) + (5 * 0)), ((-6 * 6) + (1 * 4) + (-3 * 8) + (5 * -7)); )\ "AB" &= #solve[$mat( -17&, -2&; -13&, -91&; )$] $ ] ], [ (10 pts) $A = mat(1, 0, 0; 0, -1, -1; -1, 1, 0;)$ $B = mat(1, 1, -1; 0, -1, 1; 1, 1, 0;)$ #note[ $ "AB" &= mat(1, 0, 0; 0, -1, -1; -1, 1, 0;) × mat(1, 1, -1; 0, -1, 1; 1, 1, 0;)\ "AB" &= mat( ((1 * 1) + (0 * 0) + (0 * 1)), ((1 * 1) + (0 * -1) + (0 * 1)), ((1 * -1) + (0 * 1) + (0 * 0)); ((0 * 1) + (-1 * 0) + (-1 * 1)), ((0 * 1) + (-1 * -1) + (-1 * 1)), ((0 * -1) + (-1 * 1) + (-1 * 0)); ((-1 * 1) + (1 * 0) + (0 * 1)), ((-1 * 1) + (1 * -1) + (0 * 1)), ((-1 * -1) + (1 * 1) + (0 * 0)) )\ "AB" &= #solve[$mat( 1&, 1&, -1&; -1, 0&, -1&; -1, -2&, 2& )$]\ $ ] ], ) 3. Compute $"AB"$ and $"BA"$. Does $"AB" = "BA"$? (10 pts) $A = mat(2, 2; 2, 1;)$ and $B = mat(1, 2; 1, 2;)$ #note[ $ "AB" &= mat(2, 2; 2, 1;) × mat(1, 2; 1, 2;)\ "AB" &= mat(((2 * 1) + (2 * 1)), ((2 * 2) + (2 * 2)); ((2 * 1) + (1 * 1)), ((2 * 2) + (1 * 2));)\ "AB" &= #solve[$mat(4, 8; 3, 6;)$]\ $ #align(center)[#line(length: 6cm)] $ "BA" &= mat(1, 2; 1, 2;) × mat(2, 2; 2, 1;) \ "BA" &= mat(((1 * 2) + (2 * 2)), ((1 * 2) + (2 * 1)); ((1 * 2) + (2 * 2)), ((1 * 2) + (2 * 1));)\ "BA" &= #solve[$mat(6, 4; 6, 4;)$]\ $ #solve[$"AB" ≠ "BA"$] ] 4. Compute the transpose of matrix A (5 pts) $A = mat(9, 2, 5; 1, 0, 4;)$ #solve[ $ A^t &= mat(9, 1; 2, 0; 5, 4) $ ] #align(center)[#text(size: 2em)[#note[See next page]]] 5. #block(breakable: false)[Represent the following system of linear equations using matrices $ a_11x_1 + a_12x_2 + a_13x_3 + a_14x_4 &= b_1\ a_21x_1 + a_22x_2 + a_23x_3 + a_24x_4 &= b_2\ a_31x_1 + a_32x_2 + a_33x_3 + a_34x_4 &= b_3\ a_41x_1 + a_42x_2 + a_43x_3 + a_44x_4 &= b_4 $ The representation is $A*X = B$. What is matrices $A$, $X$, and $B$? (10 pts) #align(center)[ #solve[ #table( stroke: (x, y) => ( left: none, top: if y > 0 { .5pt }, ), columns: (auto, auto, auto, auto, auto), align: center + horizon, table.header([$A$], [], [$X$], [], [$B$]), [ $ mat( delim: "(", a_11, a_12, a_13, a_14; a_21, a_22, a_23, a_24; a_31, a_32, a_33, a_34; a_41, a_42, a_43, a_44; ) $ ], [$⋅$], [ $ mat(delim: "(", x_1; x_2; x_3; x_4; ) $ ], [$=$], [ $ mat(delim: "(", b_1; b_2; b_3; b_4; ) $ ], ) ] ] ] 6. Show the adjacency matrix for the following graph. (20 pts) #figure( image("./assets/graph.png", width: 60%), ) #align(center)[ #solve[ #table( stroke: (x, y) => ( left: if y > 0 { if x == 1 { 0.5pt } else if x > 1 { .1pt } }, top: if x > 0 { if y == 1 { 0.5pt } else if y > 1 { .1pt } }, ), columns: (auto, auto, auto, auto, auto, auto, auto), fill: (x, y) => { if calc.odd(y) and y > 0 and x > 0 { color.hsl(200deg, 60%, 40%, 25%) } else { none } }, inset: 3pt, [ ], [A], [B], [C], [D], [E], [F], [A], [1], [1], [0], [0], [1], [0], [B], [1], [1], [1], [1], [1], [0], [C], [0], [1], [1], [0], [1], [1], [D], [0], [1], [0], [1], [1], [0], [E], [1], [1], [1], [1], [1], [0], [F], [0], [0], [1], [0], [0], [1], ) #notein[ Sorry about the lack of _proper_ matrix notation. I had a hard time typesetting the row and column labels for matrices in particular in Typst :(. I have to wait on https://github.com/typst/typst/issues/445 to get resolved I guess. #text(size: .9em)[_Arguably though, that table _is_ easier to read._] ] ] ] #align(center)[#text(size: 2em)[#note[See next page]]] 7. #block(breakable: false)[Compute the determinant of matrix $A$. (20 pts) $ A = mat( 6, 1, 4, 8; 4, 2, 3, 2; 4, 1, 2, 3; 9, 7, 5, 6; ) $ #align(center)[ #note[ #align(left)[#note[ $|A| = 6mat( 2, 3, 2; 1, 2, 3; 7, 5, 6; ) - 1mat( 4, 3, 2; 4, 2, 3; 9, 5, 6; ) + 4mat( 4, 2, 2; 4, 1, 3; 9, 7, 6; ) - 8mat( 4, 2, 3; 4, 1, 2; 9, 7, 5; )$ ]] #align(left)[#note[ #notein[The expanded values were found via *Sarrus' rule* for each $3 × 3$ matrix above.] $ |A| &=\ 6&[ (2 * 2 * 6) + (3 * 3 * 7) + (2 * 1 * 5) - (7 * 2 * 2) - ( 5 * 3 * 2 ) - (6 * 1 * 3) ]\ - 1&[ (4 * 2 * 6) + (3 * 3 * 9) + (2 * 4 * 5) - (9 * 2 * 2) - ( 5 * 3 * 4 ) - (6 * 4 * 3) ]\ + 4&[ (4 * 1 * 6) + (2 * 3 * 9) + (2 * 4 * 7) - (9 * 1 * 2) - ( 7 * 3 * 4 ) - (6 * 4 * 2) ]\ - 8&[ (4 * 1 * 5) + (2 * 2 * 9) + (3 * 4 * 7) - (9 * 1 * 3) - ( 7 * 2 * 4 ) - (5 * 4 * 2) ]\ $ ]] #align(left)[#note[ $ |A| &= 6[21] - 1[1] + 4[-16] - 8[17]\ $ ] ] #align(center)[#solve[-75]] ] ] ]