
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carneie Mellon

Floating Point Representation
 Lecture 09



2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point Representation

 A floating-point representation encodes rational numbers of 
the form V = x × 2y.

 It is useful for performing computations involving very large 
numbers (|V| >> 0), numbers very close to 0 (|V|<<1), and 
more generally as an approximation to real arithmetic.



3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

IEEE Floating Point

 IEEE Standard 754
 Established in 1985 as uniform standard for floating point arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs



4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Numerical Form: 
(–1)s M 2E

 Sign bit s determines whether number is negative or positive
 Significand M normally a fractional value in range [1.0,2.0).
 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 exp field encodes E (but is not equal to E)
 frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac



5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Precision options

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits



Floating-point  
numbers are  
represented by  
three fields. For  
the two most  
common formats,  
these are packed  
in 32-bit (single-
precision) or 64-
bit (double-
precision) words.

The bit representation of a floating-point number is divided into three fields to encode these values:

The single sign bit s directly encodes the sign s.

The k-bit exponent field exp = ek–1 · · · e1e0 encodes the exponent E.

The n-bit fraction field frac = fn–1 · · · f1f0 encodes the significand M, but the value encoded also depends on whether  
or not the exponent field equals 0.



• shows the packing of these three fields into words for the two most  
common formats. In the single-precision floating-point format
(a float in C), fields s, exp, and frac are 1, k = 8, and n= 23 bits each,
yielding a 32-bit representation. In the double-precision floating-point  
format (a double in C), fields s, exp, and frac are 1, k = 11, and n = 52  
bits each, yielding a 64-bit representation.



8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Case 1: Normalized Values

 This is the most common case. It occurs when the bit pattern of 
exp is neither all zeros (numeric value 0) nor all ones (numeric 
value 255 for single precision, 2047 for double). 

 In this case, the exponent field is interpreted as representing a 
signed integer in biased form. That is, the exponent value is E = 
e − Bias, where e is the unsigned number having bit 
representation ek−1 . . . e1e0 and Bias is a bias value equal to 
2k-1 − 1 (127 for single precision and 1023 for double). This 
yields exponent ranges from −126 to +127 for single precision 
and −1022 to +1023 for double precision.

 The fraction field frac is interpreted as representing the 
fractional value f , where 0 ≤f <1, having binary representation 
0.fn−1 . . . f1f0, that is, with the binary point to the left of the 
most significant bit.



9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

“Normalized” Values

 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E =  Exp – Bias
 Exp: unsigned value of exp field
 Bias = 2k-1 - 1, where k is number of exponent bits
 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M =  1.xxx…x2

 xxx…x: bits of frac field
 Minimum when frac=000…0 (M = 1.0)
 Maximum when frac=111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”

v = (–1)s M 2E



10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Normalized Encoding Example
 Value: float F = 15213.0;
 1521310 = 111011011011012

= 1.11011011011012 x 213

 Significand
M = 1.11011011011012
frac= 110110110110100000000002

 Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000 
s exp frac

v = (–1)s M 2E

E =  Exp – Bias



11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Case 2: Denormalized Values
 When the exponent field is all zeros, the represente number is in denormalized 

form. In this case, the exponent value is E = 1− Bias, and the significand value is 
M = f , that is, the value of the fraction field without an implied leading 1.

 Denormalized numbers serve two purposes. First, they provide a way to 
represent numeric value 0, since with a normalized number we must always 
have M ≥ 1, and hence we cannot represent 0. In fact, the floating-point 
representation of +0.0 has a bit pattern of all zeros: the sign bit is 0, the 
exponent field is all zeros (indicating a denormalized value), and the fraction 
field is all zeros, giving M = f = 0. Curiously, when the sign bit is 1, but the other 
fields are all zeros, we get the value −0.0. With IEEE floating-point format, the 
values −0.0 and +0.0 are considered different in some ways and the same in 
others.

 A second function of denormalized numbers is to represent numbers that are 
very close to 0.0



12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Denormalized Values

 Condition: exp = 000…0

 Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0
 Represents zero value
 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac ≠ 000…0
 Numbers closest to 0.0
 Equispaced

v = (–1)s M 2E

E =  1 – Bias



Case 3: Special Values
• A final category of values occurs when the exponent field is all ones.  

When the fraction field is all zeros, the resulting values represent  
infinity, either +∞ when s = 0 or -∞ when s = 1. Infinity can represent  
results that overflow, as when we multiply two very large numbers, or  
when we divide by zero.

• When the fraction field is nonzero, the resulting value is called
a “NaN,” short for “not a number.” Such values are returned as the  
result of an operation where the result cannot be given as a real  
number or as infinity, as when computing √−1 or ∞ – ∞. They can also  
be useful in some applications for representing uninitialized data.



14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Case 3: Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0
 Represents value ∞ (infinity)
 Operation that overflows
 Both positive and negative
 E.g., 1.0/0.0 = −1.0/−0.0 = +∞,  1.0/−0.0 = −∞

 Case: exp = 111…1, frac ≠ 000…0
 Not-a-Number (NaN)
 Represents case when no numeric value can be determined
 E.g., sqrt(–1), ∞ − ∞, ∞ × 0



15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Visualization: Floating Point Encodings

+∞−∞

−0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN



16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
Numbers

shows the set of values that can be represented in a hypothetical 6-bit format having k= 3 exponent bits and n = 2  
fraction bits. The bias is 23–1 – 1 = 3. Part (a) of the figure shows all representable values (other than NaN). The two  
infinities are at the extreme ends. The normalized numbers with maximum magnitude are ±14. The denormalized  
numbers are clustered around 0. These can be seen more clearly in part (b) of the figure, where we show just the  

numbers between –1.0 and +1.0. The two zeros are special cases of denormalized numbers. Observe that the  
representable numbers are not uniformly distributed—they are denser nearer the origin.



18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
Numbers



19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
Numbers



Rounding
• Floating-point arithmetic can only approximate real arithmetic, since the  

representation has limited range and precision. Thus, for a value x, we  
generally want a systematic method of finding the “closest” matching value  
xʹ that can be represented in the desired floating-point format. This is the  
task of the rounding operation. One key problem is to define the direction to
round a value that is halfway between two possibilities. For example, if I  
have $1.50 and want to round it to the nearest dollar, should the result be
$1 or $2?

• An alternative approach is to maintain a lower and an upper bound on the  
actual number. For example, we could determine representable values x−  
and x+ such that the value x is guaranteed to lie between them: x− ≤ x ≤ x+.

• The IEEE floating-point format defines four different rounding modes. The  
default method finds a closest match, while the other three can be used for  
computing upper and lower bounds.



Rounding



Round-to-even

• Round-to-even at first seems like it has a rather arbitrary goal—why is  
there any reason to prefer even numbers? Why not consistently round  
values halfway between two representable values upward? The problem  
with such a convention is that one can easily imagine scenarios in which  
rounding a set of data values would then introduce a statistical bias into
the computation of an average of the values. The average of a set of  
numbers that we rounded by this means would be slightly higher than the  
average of the numbers themselves. Conversely, if we always rounded  
numbers halfway between downward, the average of a set of rounded  
numbers would be slightly lower than the average of the numbers  
themselves. Rounding toward even numbers avoids this statistical bias in  
most real-life situations. It will round upward about 50% of the time and  
round downward about 50% of the time.



Round-to-even

• Round-to-even rounding can be applied even when we are not  
rounding to a whole number. We simply consider whether the least  
significant digit is even or odd. For example, suppose we want to  
round decimal numbers to the nearest hundredth. We would round  
1.2349999 to 1.23 and 1.2350001 to 1.24, regardless of rounding  
mode, since they are not halfway between 1.23 and 1.24. On the  
other hand, we would round both 1.2350000 and 1.2450000 to 1.24,  
since 4 is even.



24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rounding

 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –$1.50
 Towards zero $1 $1 $1 $2 –$1
 Round down (−∞) $1 $1 $1 $2 –$2
 Round up (+∞) $2 $2 $2 $3 –$1
 Nearest Even (default) $1 $2 $2 $2 –$2



25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point in C
 When casting values between int, float, and double formats, the program changes 

the numeric values and the bit representations as follows (assuming data type int is 
32 bits):

 From int to float, the number cannot overflow, but it may be rounded.
 From int or float to double, the exact numeric value can be preserved because 

double has both greater range (i.e., the range of representable values), as well as 
greater precision (i.e., the number of significant bits).

 From double to float, the value can overflow to+∞or−∞, since the range is smaller. 
Otherwise, it may be rounded, because the precision is smaller.

 From float or double to int, the value will be rounded toward zero. For example, 
1.999 will be converted to 1, while −1.999 will be converted to −1. Furthermore, the 
value may overflow. The C standards do not specify a fixed result for this case. Intel-
compatible microprocessors designate the bit pattern [10 . . . 00] (TMinw for word 
size w) as an integer indefinite value. Any conversion from floating point to integer 
that cannot assign a reasonable integer approximation yields this value. Thus, the 
expression (int) +1e10 yields -21483648, generating a negative value from a positive 
one.



26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Floating Point in C

 C Guarantees Two Levels
float single precision
double double precision

 Conversions/Casting
 Casting between int, float, and double changes bit representation
 double/float → int
 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally sets to TMin

 int → double
 Exact conversion, as long as int has ≤ 53 bit word size

 int → float
 Will round according to rounding mode



27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Floating Point Puzzles

 For each of the following C expressions, either:
 Argue that it is true for all argument values
 Explain why not true

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (double)(float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;
float f = …;
double d = …;

Assume neither
d nor f is NaN



28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Summary

 IEEE Floating Point has clear mathematical  properties
 Represents numbers of form M x 2E

 One can reason about operations independent of 
implementation

 Not the same as real arithmetic
 Violates associativity/distributivity
 Makes life difficult for compilers & serious numerical applications 

programmers



29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Interesting Numbers
Description exp frac Numeric Value
 Zero 00…00 00…00 0.0
 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

 Single ≈ 1.4 x 10–45

 Double ≈ 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

 Single ≈ 1.18 x 10–38

 Double ≈ 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

 Just larger than largest denormalized

 One 01…11 00…00 1.0
 Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

 Single ≈ 3.4 x 1038

 Double ≈ 1.8 x 10308

{single,double}



The high cost of floating-point
conversion to integers

• Converting large floating-point numbers to integers is a common source of programming errors.
Such an error had disastrous consequences for the maiden voyage of the Ariane 5 rocket, on June
4, 1996. Just 37 seconds after liftoff, the rocket veered off its flight path, broke up, and exploded.

• Communication satellites valued at $500 million were on board the rocket. A later investigation
showed that the computer controlling the inertial navigation system had sent invalid data to the
computer controlling the engine nozzles. Instead of sending flight control information, it had sent
a diagnostic bit pattern indicating that an overflow had occurred during the conversion of a 64-bit
floating-point number to a 16-bit signed integer.

• The value that overflowed measured the horizontal velocity of the rocket, which could be more
than five times higher than that achieved by the earlier Ariane 4 rocket. In the design of the
Ariane 4 software, they had carefully analyzed the numeric values and determined that the
horizontal velocity would never overflow a 16-bit number. Unfortunately, they simply reused this
part of the software in the Ariane 5 without checking the assumptions on which it had been  
based.

• Floating-point arithmetic must be used very carefully, because it has only limited range and  
precision and because it does not obey common mathematical properties such as associativity.



The high cost of floating point imprecision

• The imprecision of floating-point arithmetic can have disastrous  
effects.

• On February 25, 1991, during the first Gulf War, an American Patriot  
Missile battery in Dharan, Saudi Arabia, failed to intercept an  
incoming Iraqi Scud missile. The Scud struck an American Army  
barracks and killed 28 soldiers. The US General Accounting Office  
(GAO) conducted a detailed analysis of the failure and determined  
that the underlying cause was an imprecision in a numeric  
calculation.


	Floating Point�Lecture 08��
	Floating Point Representation
	IEEE Floating Point
	Floating Point Representation
	Precision options
	Slide Number 6
	Slide Number 7
	Case 1: Normalized Values
	“Normalized” Values
	Normalized Encoding Example
	Case 2: Denormalized Values
	Denormalized Values
	Case 3: Special Values
	Case 3: Special Values
	Visualization: Floating Point Encodings
	Slide Number 16
	Example Numbers
	Example Numbers
	Example Numbers
	Rounding
	Rounding
	Round-to-even
	Round-to-even
	Rounding
	Floating Point in C
	Floating Point in C
	Floating Point Puzzles
	Summary
	Interesting Numbers
	The high cost of floating-point conversion to integers
	The high cost of floating point imprecision



