CS 2124: DATA STRUCTURES
Spring 2024

6t Lecture
Topics: Advanced Linked Lists and Priority Queues

Quiz (22"9 Feb, Thursday)

* Points: 5

e Date: 22nd Feb

* Quiz availability Time: 6:00 AM till End of day (11: 58 PM)

* Number of MCQ: 12 (Each MCQ Points vary based on difficulty)

* Once the Quiz starts students will have 24 Min to complete it.

* The quiz cannot be paused or stopped. It must be attempted in one sitting

» Kindly do not refresh or go back to the previous question (press back on the browser) as that is not allowed.
* One question will be visible at one time.

* Once you answer the question (submit) it cannot be changed

¢ Students with SDS approval only need to attempt the first 6 questions that they receive on Canvas.
s After completion do email for grade scaling

Topics

e Circular LLL (Linear Linked List)
* Singly LinkedList (L.L) as Circular L.L

Algorithm

Implementation

Operation - Insertion at Front
Operation - Insertion at Last
Operation - Delete First Element
Operation — Searching
Applications

e Dual LinkedList (DLL)

Memory Representation and Operations on a DLL
Insertion At Beginning Of DLL

Insertion At End Of DLL

Deletion At Beginning Of DLL

Deletion After A Specified Node

e Circular DLL
* Implementation

* Priority Queues
* Priority Queues — Characteristics
* Priority Queues — Implementation

Circular LLL (Linear Linked List)

e Circular Linked List is a variation of Linked list in which the first element points to the last
element and the last element points to the first element.

* Both Singly Linked List and Doubly Linked List can be made into a circular linked list.

data mnext data fuiod data next
Head Next Next Next . —

> Data Items . Data Iltems > Data Iltems ; I 0 5
?

HEAD Last ElemeEnt points back 10 Firs:
Head . Next: Nex:._ c | Next Question:
—_— P P p . .
';V b didd Which Approach is better ?

Separate Head pointer or imbedded?

Circular LLL (Linear Linked List)

Singly Linked List as Circular: In singly linked list, the next pointer of the last node points to the first
node.

. Head Next Next Next
Figure 1 = ____, Dataltems , Data ltems , Dataltems

- |

Doubly Linked List as Circular: In doubly linked list, the next pointer of the last node points to the first
node and the previous pointer of the first node points to the last node making the circular in both
directions. | |

. Head Next Next Next
Figure 2 = d A 1l | 8 i o R c

Prev

t |
The last link's next points to the first link of the list in both cases of singly as well as doubly linked list.

The first link's previous points to the last of the list in case of doubly linked list.

Singly LinkedList as Circular Node | Next ode | et

(Algorithm) K — /

1. Create a node
l. Data
Il. Pointer to point next node

2. If first node, create node and place data with null as pointer (as it’s the only node)

l. Data

II. Pointer = null

3. Else last node contains the reference of the new node and new node contains the reference of the
previous/first node

l. Data

Il. Last node pointer = next node address

IIl. New node pointer = previous/first node address (insertion at end)

struct node {
int value;
struct node

}s

next;

void printLinkedlist(struct node

(p) {
("Value: , Add:

p->next;

p
}}

p)

{

> P

value,

p

value);

int main() {

struct node
struct node
struct node
struct node

("<Name, abcl23,

struct node
one

two

three

four

one- >value
two- >value
three- >value
four- >value
one- >next
two- >next
three- >next
four- >next
head one;

head;

one ;

two o

three H

four H

((struct node));

((struct node));
((struct node));
((struct node));

two;

three;
four;

kS

SP24>\n");

printLinkedlist(head);

LinkedList
(Single Circular LinkedList — Insertion at Front Part 1/3)

struct node

{
int info;
struct node” next;

_Mode n2 (#7086 Node nd [#004)

'TI#DM —I #“” :

| I:Iata ~next ptr ne:-:t ptr

}s

struct node* last H

void insertAtFront(int data)

{

struct node® temp;
temp = (struct node*) (struct node));

(last)

{ SELNOI Newly inserted node is the first node

temp->info = data;
temp- >next temp;
last = temp;

("\n Only Node Data = %d", data);
("\n Only Node Add: » temp); Data Nxt-Ptr

Continue >>

LinkedList

(Single Circular LinkedList — Insertion at Front Part 2/3)

{
(II

temp->info
temp- *next

last->next
(II
(
void viewList()

{

(last

("\nL
{

struct node
temp = last

(
(

New Node Data
data;
last->next;

temp;
Node Data
Node Add:

ist is empty

temp;
next;

info);
» temp);

“\nData = ¢, temp
" Node Address:

temp temp- >next;

(

}

Next Node Address: , temp);

(temp last->next);

Data next ptr

heead mooo ‘T

_MNoden2 | #7086 Node nd [wnngl

|T| wm__h —| IE

ST
| Data nextptr Data next ptr

Data

Nxt-Ptr

»‘ Nxt-Ptr

Continue >>

LinkedList

(Single Circular LinkedList — Insertion at Front) Part 3/3)

L L L L L L W b L L R R R

0 Y T S O O O S O U N .
B S WO ()] P &® \O

(¥)]
[o]

Co] O

w M =2 S D

LW g [=9

o

]

| WV W |

L

]

Else Last node contains the reference of
new hode contains the reference of the pr
e LR E L — L5 & L L2 o L — reje =4l L S — v = | il
m m
(New Node Data = , data
.
temp->info = data;

last

Last node now

temp next next;

last next = temp;

("\n Node Data =

(” Node Add:
void vlelest() F
{ // If

(1ast)
("\nList is empty
{//E

'y Lse print the
struct node

-
e
o thne

", data);
", temp); }}

unction to print the List

| & ‘:’-‘ ;Ard._.
o

Lol L

")

(18T

| =

temp;

temp = last->next;
S N | iy - - + r . .
While first node 1s not reached again, pri
ince the List 1s circular

I

“\nData = Y, temp

P

temp temp

(rr
}

next;
Next Node Address: -
last

(temp next

T}

info);
. Node Address: ", temp);

o [

he new node and 12 void insertAtFront(int data)
itous first node 13- {
14 Initialize a new node
); 15 struct node* temp;
16 temp = (struct node) ((struct node)),
new node temp 18 : (iast —- 'Q__)
19 {
20 temp->info = data;
21 temp->next = temp;
22 last = temp;
23 ("\n Only Node Data = %d", data);
24 ("\n Only Node Add: %p", temp);
25 }
3 Driver |
4 1nt main()
nt, 5 {

rc*1hr

1nsertﬂtFrcnt()
insertAtFront(20);
)

1nsertAtFrcnt(

ca

Oy U o ounounoun

vielest();

| - -
L1s1

, temp);

);

M =& D

o

[]
k]

(8]
LW K]
—

Continue >>

LinkedList (Single Circular LinkedList — Insertion at Last)

* Insertion at the end of the list

* To insert a node at the end of the list, follow these steps:

* Createanode,say T

e Make T -> next = last -> next
e last->next=T

e last=T

Last

Last -> next

LA

.

o

Mode T

[]

LinkedList (Single Circular LinkedList — Insertion at Last — Part 1/3)

void addatlast(int data)
{

struct node* temp;
temp = (struct node*)

(last)

{

temp->info = data;
temp- >next temp;

last = temp;

("\n Only Node Data
("\n Only Node Add:

(" M ew Mod =] D d t d

info = data;
next last

next temp;
temp;

(" Node Data
(" Node Add:

(struct node));

", data);

", data);
, temp);

Head ptr B

New
¥

Data Nxt-Ptr

IQ
>

»

Using the same base code as Insertion at beginning.
Only replacing the node add function in ELSE statement

LinkedList (Single Circular LinkedList — Insertion at Last — Part 2/3)

void addatlast(int data)

3 - { 39 // Function to print the list
14 // Initialize a new node 40 Uﬂld viewList()

5 struct node™ temp; 41 - {

16 temp (struct node*) ((struct node)); 42 If List is empt

17 // If the new node is the only node in the List 43 (1ast) H

18 (last) 44 ("\nList is empty\n");

. 45 Else print the list
20 temp->info = data; i {
21 temp->next = temp; e

struct node* temp;
temp last->next;

s

22 last = temp;
23 ("\n Only Node Data

Il
. H
(=
1)
rt
w
—
L)

|
(e

24 ("\n Only Node Add: %p", temp); 49 / Wnile first node is not

25 } 50 '/ reached again, print,

26 Else Last node contains the reference of the new node and |51 '/ since the List 1s circular

27 new node contains the reference of the previous first node | 53 {

== { .) 53 ("\nData = %d", temp->info);
29 () Neg Node Data = , data); 54 ("\n Node Address: ", temp);
ii E::P :zxz IZEiJ next; £< I S= [=rli=as

- -Emp--n . - S _— . 56 ("\n Next Node Address: *, temp);
32 // Last node now has reference of the new node temp -

33 last->next temp; o }

34 last = temp; //Add at the Llast =1 (temp last->next);

35 ("\n Node Data = %d", data); 59 }

36 ("\n Node Add: %p", temp); 60 }

38

LinkedList (Single Circular LinkedList — Insertion at Last — Part 3/3)

void viewList()

{

(last)

(n LiSt iE. Emp-t}..- ||);

{

struct node* temp;
temp = last->next;

{
("\nData = %d", temp->info);

("\n Node Address: ", temp);
temp = temp->next;
("\n Next Node Address:
}
(temp last->next);

", temp);

int main()

{

addatlast(19);
addatlast(20);
addatlast(20)

>

viewList();

kS

LinkedList (Single Circular LinkedList — Insertion in L.L)

* Insert a new node in between the list.
 If the list is empty, both head and tail will point to new node.
* If the list is not empty, then.
* We will define two nodes
e Current (current will point to the node previous to temp), and
* Temp (temp will point to head).
* We iterate through the list till desired-point is reached (i.e. incrementing temp to temp.next)
* Then, insert the new node in between current and temp.
* Current -> next node will be new and the new -> next node will be temp.

Try to code this by your self

Additional Source: Link

https://www.javatpoint.com/program-to-insert-a-new-node-at-the-middle-of-the-circular-linked-list

LinkedList

(Single Circular LinkedList — Insertion at Last and Delete First Element)

void deletefirst()
{

struct node* temp;

e nLis First Last
("\nList is empty.\n"); First Last

{
last->next = temp->next;
(temp); Own Add ..f2a0 / ...fedo / ..f6f0

Next Add ..f6d0 ...f6f0 ..f2a0 —

Using the same base code as Insertion at beginning & end.

LinkedList (Single Circular L.L — Insertion at Last and Delete First Element) — Part 1/3

w kM =2

ol el
JMN R ® WSO b

LA

=
i

15
16

-]
LW I =Y

] h

[I S LS R |

// Structure of a Linked List node
struct node
¢ int info;

struct node* next;
}s
// Pointer to Last node 1n the lList
struct node last H

vold addatlast(lnt data)
{

Initialize a new no

éfruct node® temp;
temp (struct node*) (

-

If the new node 15 the onlLy

(last)

temp->info = data;
temp- >next temp;
last = temp;
("\n Only Node Data =

(" Only Node Address:

Else Last node contains the
new node contains the referen

J

(struct nqde));

node 1n the

", data);

. 3
=S O
n O

'\ -

W oW W MM

W oW W W w L

Co

L

[#4]

2 QO O

] v

J

i

{

temp->info = data;
te""P next - last->next;
/ LT:? fﬁ’: how has rof

1ast
last

next

temp; //Add at the

(rr
(rr

m
S5 9
=3

rt
(o]
99
m

I L L
e L O S R % T = I I s |

I
[0}

2 & WO

%]

L% W O W W (R =Y
LW H]

un
B

s

temp;

New Node Data
New Node Add:

unction delete the first
. susﬂsrt of the List
void deleteflrst()

{

struct node temp;

r g = = = - "
L1s1 1S empty
-

(1ast)
List is empty.

LT T)

erenc

")

E | -~ - re —
Else Last node now contains
= =
reference of the second node
ETEMNE] € U] Lne second nNode
in the List because the
L1st 1s circuLar

{

temp last->next;
last->next = temp->next;

(temp);

—

O
o
m
~+
m
=

LinkedList (Single Circular L.L — Insertion at Last and Delete First Element) — Part 2/3

void viewList()

{

(last)
("\nList is empty\n");

{

struct node® temp;
temp = last->next;

("\nData = %d", temp->info);

("\n Node Address: ", temp);
temp temp- >next;

("\n Next Node Address: ", temp);

}
}

(temp last->next);

}

int main()

{

addatlast(10);
addatlast(26);
addatlast(20);
viewList();
deletefirst();
(" After deletion:\n");
viewList();

LinkedList (Single Circular LinkedList — Insertion at Last and Delete Last Element)

* Scenario (the list contains single element)

* If the list contains single node then, the condition head - next == head will become true. In this case, we need
to delete the entire list and make the head pointer free. This will be done by using the following statements.

if(head->next == head)
* {

head = NULL;
free(head);

*)

LinkedList (Single Circular LinkedList — Insertion at Last and Delete Last Element)

* Scenario (the list contains more than one element)

* |f the list contains more than one element, then in order to delete the last element, we need to reach the last
node.

* We also need to keep track of the second last node of the list. For this purpose, the two pointers ptr and preptr
are defined. The following sequence of code is used for this purpose.

HEAD
e ptr=head;
. while(ptr ->next != head) old link deleted node
* { T » . > | T
. preptr=ptr; . preptr ptr
. ptr = ptr->next; et
. } Nereercssenssenssensssns e st s EE T "
* preptr->next = ptr -> next; old lin
i free(ptr); preptr -> next = head

free ptr

 We need to make just one more pointer adjustment. We need to make the next pointer of preptr point to the
next of ptr (i.e. head) and then make pointer ptr free.

|_| N ked |_|St (Single Circular LinkedList — Searching)

e Searching in circular singly linked list needs traversing
across the list.

* The item which is to be searched in the list is matched
with each node data of the list once and if the match
found then the location of that item is returned otherwise
-1 is returned.

N

o0

Step 1: SET PTR = HEAD
Step 2: Set1=0
STEP 3: IF PTR = NULL
1. WRITE "EMPTY LIST"
2. GOTO STEP 8
3. ENDOFIF
STEP 4: IF HEAD - DATA = ITEM
1. WRITE i+1 RETURN [END OF IF]
STEP 5: REPEAT STEP 5 TO 7 UNTIL PTR->next != head
STEP 6: if ptr & data = item
1. writei+l
2. RETURN
3. Endof IF
STEP 7:1=1+1
STEP 8: PTR = PTR - NEXT [END OF LOOP]
STEP 9: EXIT

Circular LLL (Linear Linked List)

* Circular Linked List Applications:
1. Itis used in multiplayer games to give a chance to each player to play the game.

2. Multiple running applications can be placed in a circular linked list on an operating system.
The OS keeps on iterating over these applications.

LinkedList (Dual LinkedList)

Doubly linked list is a complex type of linked list in which a node contains a pointer to the previous as well as the
next node in the sequence. Therefore, in a doubly linked list, a node consists of three parts: node data, pointer to
the next node in sequence (next pointer) , pointer to the previous node (previous pointer).

head

L—’ Prev Data

Node

struct node

{

}

struct node *prev;
int data;
struct node *next;

head
L—> » —
Doubly Linked List
* struct node
o « struct DLLNode { The prev part of the first node
. struct node *prev; . intinfo: and the next part of the last node
. int data; + struct node *left, *right; will z.always co.ntalh null indicating
. struct node *next; Y end in each direction.
* b
e struct node *head;

LinkedList (Dual LinkedList)

one->next two;
one->pre H
two- >next three;
struct node { two->pre = one;
int value; three->next = four;
struct node *“next; three- >pre two;
struct node “pre; four- >next H
}s _ four->pre = three;
int main() { (“%d, ", one->value, Zone->value);
("Last: ", one->pre);
struct node *head; ("Next: *, one->next);
struct node *one ("%d, ", two->value, &two->value);
struct node *two ("Last: ", two->pre);
struct node *three ; ("Next: ", two->next);
struct node “four 3 (“%d, ", three->value, &three->value);
("Last: ", three->pre);
one ((struct node)); ("Next: ", three->next);
two ((struct node)); ("%d, *, four->value, &four->value);
three ((struct node)); ("Last: ", four->pre);
four ((struct node)); ("Next: ", four->next);
one->value H
two- >value H
three->value E Is this going to work ?7?

four->value

LinkedList (Dual LinkedList)

, one->value, Zone->value);
", one->pre);
, one->next);
, two->value, &two->value);
", two->pre);
, two->next);

,» three->value, &three->value);

, three->pre);

» three->next);

, four->value, &four->value);
*, four->pre);

, four->next);

