
8th Lecture

Topics: Heaps

Topics

• How to identify which Data Structure to use

• Heaps

• Adding a Node to a Heap

• Removing the Top of a Heap

• Implementing a Heap (Array)

• Important Points About The Implementation

• From Array to Heap

• Heap (Applications)

• Heap (Advantages and Disadvantages)

• Huffman using heap

• Applications of Huffman Coding

How to identify which Data Structure to use

• Understanding the data you will deal with before selecting a data structure is vital:

1. When you need to access elements randomly from your data, arrays might be the best choice.

2. In case, you constantly need to add or delete elements from a list, and the list size also might change, then linked lists
can be particularly useful.

3. When you need to effectively store multiple levels of data, such as record structures, and carry out operations like
searching and sorting, then trees are useful.

4. When you need to describe interactions between entities, such as those in social networks, and perform operations such
as shortest path and connectivity, then Graphs are preferred.

Image Source: Interview Bit & is basically a classification of Data Structures

5. Hash tables are helpful for speedy key lookups

How to identify which Data Structure to use

• While choosing a data structure, you must also consider the operations to be performed on the data.

• Different data structures optimize numerous actions, such as sorting, searching, insertion, and deletion.

• Linked lists are better for actions like insertion and deletion.

• Binary trees are best for searching and sorting.

• A hash table can be the best choice if your application requires simultaneous insertion and searching.

• Evaluate the Environment:

• When considering a data structure, you must evaluate the environment in which the application will run.

• The environment affects how well and how promptly accessible data structures are.
• (i.e. Processing resources, Concurrency/Parallel processes, network latency, etc.)

How to identify which Data Structure to use

• Before picking a data structure, consider your application's data,
obligations, and environment.

• While going with your choice, think about the following elements:

• Time complexity

• Space Complexity

• Read vs. Write Operations

• Type of Data

• Hardware

• Network

• Data Synchronization

Image Source: ByteByteGo

Heaps

A heap is an advanced tree-based data structure used primarily for sorting and implementing priority queues.

• They are complete binary trees that have the following features:

• Every level is filled except the leaf nodes (nodes without children are called leaves).

• Every node has a maximum of 2 children.

• All the nodes are as far left as possible, this means that every child is to the left of his parent.

• Heaps use complete binary trees to avoid holes in the array (optimizing
operations).

• A complete binary tree is a tree where each node has at most two children and
the nodes at all levels are full, except for the leaf nodes which can be empty.

• Heaps are built based on the heap property, which compares the parent node key
with its child node keys.

Heaps (Operations and Types)

• Heapify: A process of creating a heap from an array.
• Insertion: Process to insert an element in existing heap time complexity O(log N).
• Deletion: Deleting the top element of the heap or the highest priority element, and then organizing the heap

and returning the element with time complexity O(log N).
• Peek: To check or find the most prior element in the heap, (max or min element for max and min heap).
• Extract: Returns the value of an item and then deletes it from the heap.
• isEmpty: Boolean, returns true if Boolean is empty and false if it has a node.

Root and Sub-roots
must be max then

their leaves

Root and Sub-roots
must be min then

their leaves

Heaps

Each node in a heap
contains a key that

can be compared to
other nodes' keys.

19

4222127

23

45

35

The "heap property"
requires that each

node's key is >=, <= the
keys of its children

Max HeapIt is important to note that heaps are not always sorted, the key
condition that they follow is that the largest or smallest element is
placed on the root node (top) depending if it is a Max or Min Heap.

The Heap data structure is not the same as heap memory.

• Max Heap Parent >= to Child node key
• Min Heap Parent <= to Child node key

Adding a Node to a Heap

• Put the new node in the next available spot.

• Push the new node upward, swapping with its
parent until the new node reaches an acceptable
location.

19

4222127

23

45

35

42

Adding a Node to a Heap

19

4222135

23

45

42

27

• The parent has a key that is >= new node,

or

• The node reaches the root.

• The process of pushing the new node upward is called reheapification upward.

19

4222142

23

45

35

27

The process is complete

Removing the Top of a Heap

• Move the last node onto the root.

19

4222135

23

45

42

27 19

4222135

23

27

42

• Move the last node onto the root.

Removing the Top of a Heap

• Move the last node onto the root.

• Push the out-of-place node downward, swapping with its larger child until the new node reaches an acceptable
location.

19

4222135

23

27

42

19

4222135

23

42

27

Removing the Top of a Heap

19

4222127

23

42

35

• The children all have keys <= the out-of-place node, or
• The node reaches the leaf.
• The process of pushing the new node downward is called reheapification downward.

19

4222135

23

42

27

Implementing a Heap (Tree to Array)

• We will store the data from the nodes in a partially-filled array.

• Data from the root goes in the first location of the array.

2127

23

42

35

2127

23

42

35

42

• Data from the next row goes in the next two array locations.

2127

23

42

35

42 35 23

2127

23

42

35

42 35 23 27 21

Implementing a Heap (Tree to Array)

Important Points

• The links between the tree's nodes are not actually stored as pointers, or in any other way.

• The only way we "know" that "the array is a tree" is from the way we manipulate the data.

An array of data

2127

23

42

35

42 35 23 27 21

[0] [1] [2] [3] [4]

1. struct node* generateTree(){

2. // Root Node

3. struct node* root = getNewNode(0);

4. // Level 2 nodes

5. root->left = getNewNode(1);

6. root->right = getNewNode(2);

7. // Level 3 nodes

8. root->left->left = getNewNode(3);

9. root->left->right = getNewNode(4);

10. return root;

11. }

• If you know the index of a node, then it is easy to figure out the indexes of that node's parent and children.

1. The parent child of i will be at index
𝑖−1

2
(If array [0])

2. The parent child of i will be at index
𝑖

2
(If array [1])

3. The left child of i will be at index 2i + 1 (If array [0])

4. The left child of i will be at index 2i (If array [1])

5. The right child of i will be at index 2i + 2 (If array [0])

6. The right child of i will be at index 2i + 1 (If array [1])
2127

23

42

35

42 35 23 27 21

[1] [2]

[0] [1]

Which one is better?
• Index = i

Implementing a Heap (Array to Tree conversion using mathematics)

Implementing a Heap (Array to Tree conversion using mathematics)

• If you know the index of a node, then it is easy to figure out
the indexes of that node's parent and children.

1. The parent child of i will be at index
𝑖

2
(If array [1])

2. The left child of i will be at index 2i (If array [1])

3. The right child of i will be at index 2i + 1 (If array [1])
2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5]

• If you know the index of a node, then it is easy to figure out the indexes
of that node's parent and children.

1. The parent child of i will be at index
𝑖

2
(If array [1])

2. The left child of i will be at index 2i (If array [1])

3. The right child of i will be at index 2i + 1 (If array [1])

2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5]

Implementing a Heap (Array to Tree conversion using mathematics)

1. Find parent of 35 [2]

2.
2

2
= 1 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 42[1]

• If you know the index of a node, then it is easy to figure out the indexes
of that node's parent and children.

1. The parent child of i will be at index
𝑖

2
(If array [1])

2. The left child of i will be at index 2i (If array [1])

3. The right child of i will be at index 2i + 1 (If array [1])

2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5]

Implementing a Heap (Array to Tree conversion using mathematics)

1. Find parent of 23 [3]

2.
3

2
= 1.5 ⇒ 𝐹𝑙𝑜𝑜𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 42[1]

• Floor function => ⌊ 2.3 ⌋ = 2
• Ceiling function => ⌈ 4.5 ⌉ = 5

• If you know the index of a node, then it is easy to figure out the indexes of
that node's parent and children.

1. The parent child of i will be at index
𝑖−1

2
(If array [0])

2. The left child of i will be at index 2i + 1 (If array [0])

3. The right child of i will be at index 2i + 2 (If array [0])

2127

23

42

35

42 35 23 27 21

[0] [1] [2] [3] [4]

Implementing a Heap (Array to Tree conversion using mathematics)

1. Find parent of 35 [1]

2.
1−1

2
= 0 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 42[0]

• Floor function => ⌊ 0.5 ⌋ = 0
• Ceiling function => ⌈ 0.5 ⌉ = 1

• If you know the index of a node, then it is easy to figure out the indexes of that
node's parent and children.

1. The parent child of i will be at index
𝑖

2
(If array [1])

1. Find parent of 35 [2]

2.
2

2
= 1 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 42[1]

2. The left child of i will be at index 2i (If array [1])

3. The right child of i will be at index 2i + 1 (If array [1])
2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5]

Implementing a Heap (Array to Tree conversion using mathematics)

1. Find left-child of 35 [2]

2. 2𝑖(𝑖 = 2) = 4 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 27[4]

• If you know the index of a node, then it is easy to figure out the indexes of
that node's parent and children.

1. The parent child of i will be at index
𝑖

2
(If array [1])

1. Find parent of 35 [2]

2.
2

2
= 1 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 42[1]

2. The left child of i will be at index 2i (If array [1])

1. Find left-child of 35 [2]

2. 2𝑖(𝑖 = 2) = 4 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 27[4]

3. The right child of i will be at index 2i + 1 (If array [1])
2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5]

Implementing a Heap (Array to Tree conversion using mathematics)

1. 2𝑖 + 1(𝑖 = 2) = 5 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 21[5]

• If you know the index of a node, then it is easy to figure out the indexes of
that node's parent and children.

1. The parent child of i will be at index
𝑖

2
(If array [1])

1. Find parent of 35 [2]

2.
2

2
= 1 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 42[1]

2. The left child of i will be at index 2i (If array [1])

1. Find left-child of 35 [2]

2. 2𝑖(𝑖 = 2) = 4 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 27[4]

3. The right child of i will be at index 2i + 1 (If array [1])

1. 2𝑖 + 1(𝑖 = 2) = 5 ⇒ 𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 ⇒ 21[5]
2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5]

Implementing a Heap (Array to Tree conversion using mathematics)

From Array to Max Heap Tree (Using Formulas)

5 12 64 1 37

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 91 97

[6] [7]

[8]

[6] [7] [8]

1. The parent child of i will be at index
𝑖

2
(If array [1])

2. The left child of i will be at index 2i (If array [1])

3. The right child of i will be at index 2i + 1 (If array [1])

371

64

5

12

5 12 64 1 37

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 91 97

9190[6] [7]

97[8]

[6] [7] [8]

1. First map the array into the tree
2. Began from the last sab-tree left side
• index ⌊𝑖/2⌋ (If array [1])
• 𝑖 = 8 => ⌊8/2⌋ = 4

From Array to Max Heap Tree (Using Formulas)

3797

64

5

12

5 12 64 97 37

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 91 1

9190[6] [7]

1[8]

[6] [7] [8]

Began from the last sab-tree
• index ⌊𝑖/2⌋ (If array [1])
• 𝑖 = 8 => ⌊8/2⌋ = 4
• Node is moved to new position, next
• 𝑖-1
• Now value of 𝑖 was 4 so:
• 𝑖-1 = 4-1 = 3

From Array to Max Heap Tree (Using Formulas)

After moving 97 we check if it follow Max Heap

• Now Check if i=3 follow Max Heap

3797

91

5

12

5 12 91 97 37

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 64 1

6490[6] [7]

1[8]

[6] [7] [8]

Began from the last sab-tree
• index ⌊𝑖/2⌋ (If array [1])
• 𝑖 = 8 => ⌊8/2⌋ = 4
• 𝑖-1
• Now value of 𝑖 was 4 so:
• 4-1 = 3
• Child note with larger value becomes

root of the sub-tree

From Array to Max Heap Tree (Using Formulas)

3797

91

5

12

5 12 91 97 37

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 64 1

6490[6] [7]

1[8]

[6] [7] [8]

Began from the last sab-tree
• index ⌊𝑖/2⌋ (If array [1])
• 𝑖 = 8 => ⌊8/2⌋ = 4
• 𝑖-1
• Now value of 𝑖 was 4 so:
• 4-1 = 3
• Now value of 𝑖 was 3 so:
• 3-1 = 2
• Child note with larger value becomes

root of the sub-tree

From Array to Max Heap Tree (Using Formulas)

3712

91

5

97

5 97 91 12 37

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 64 1

6490[6] [7]

1[8]

[6] [7] [8]

Began from the last sab-tree
• index ⌊𝑖/2⌋ (If array [1])
• 𝑖 = 8 => ⌊8/2⌋ = 4
• 𝑖-1
• Now value of 𝑖 was 4 so:
• 4-1 = 3
• Now value of 𝑖 was 3 so:
• 3-1 = 2
• Now value of 𝑖 was 2 so:
• 2-1 = 1
• Child note with larger value becomes

root of the sub-tree

From Array to Max Heap Tree (Using Formulas)

3712

91

97

5

97 5 91 12 37

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 64 1

6490[6] [7]

1[8]

[6] [7] [8]

Began from the last sab-tree
Began from the last sab-tree
• index ⌊𝑖/2⌋ (If array [1])
• 𝑖 = 8 => ⌊8/2⌋ = 4
• 𝑖-1
• Now value of 𝑖 was 4 so:
• 4-1 = 3
• Now value of 𝑖 was 3 so:
• 3-1 = 2
• Now value of 𝑖 was 2 so:
• 2-1 = 1
• Child note with larger value becomes root of the

sub-tree

From Array to Max Heap Tree (Using Formulas)

3712

91

97

5

97 5 91 12 37

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 64 1

6490[6] [7]

1[8]

[6] [7] [8]

Is it complete ?

We run the same round on this tree again to achieve the final tree

From Array to Max Heap Tree (Using Formulas)

512

91

97

37

97 37 91 12 5

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

90 64 1

6490[6] [7]

1[8]

[6] [7] [8]

• After the 2nd round we have the complete tree with
array representation.

From Array to Max Heap Tree (Using Formulas)

42 35 23 27 21

[1] [2]

[1]

[2] [3]

[4] [5]

[3] [4] [5]

Try this by your self using the formulas in previous slides
Condition:
Parent/Root node key <= Child node Key

From Array to Min Heap Tree (Using Formulas)

1. The parent child of i will be at index
𝑖−1

2
(If array [0])

2. The parent child of i will be at index
𝑖

2
(If array [1])

3. The left child of i will be at index 2i + 1 (If array [0])

4. The left child of i will be at index 2i (If array [1])

5. The right child of i will be at index 2i + 2 (If array [0])

6. The right child of i will be at index 2i + 1 (If array [1])

1

3 5

4 6 13 10

Tree representation of
Array (line 50)

//N = 7

Source Video

https://www.youtube.com/watch?v=pAU21g-jBiE

Index Value

0 1

1 3

2 5

3 4

4 6

5 13

6 10

Tree representation of
Array (line 50 - Max Heap)

13

6 10

4 3 5 1

