CS 3333: Mathematical Foundations

Primes, GCD, and LCM

 \triangleright Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p.

▶ Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

If p has a positive factor other than 1 and p, then p is a composite number.

 \triangleright Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p .

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- If p has a positive factor other than 1 and p, then p is a composite number.
- \blacktriangleright Examples:
	- \blacktriangleright p = 5

 \triangleright Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p.

- If p has a positive factor other than 1 and p, then p is a composite number.
- \blacktriangleright Examples:
	- ▶ $p = 5$; factors: 1, 5

 \triangleright Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p.

- If p has a positive factor other than 1 and p, then p is a composite number.
- \blacktriangleright Examples:
	- $p = 5$; factors: 1, 5; it is prime

▶ Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p .

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- If p has a positive factor other than 1 and p, then p is a composite number.
- \blacktriangleright Examples:

$$
\blacktriangleright
$$
 p = 5; factors: 1, 5; it is prime

$$
\bullet \ \ p=6
$$

▶ Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p.

K ロ X K @ X K 할 X K 할 X 및 및 X O Q O

- If p has a positive factor other than 1 and p, then p is a composite number.
- \blacktriangleright Examples:
	- $p = 5$; factors: 1, 5; it is prime
	- ▶ $p = 6$; factors: 1, 2, 3, 6

▶ Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p.

- If p has a positive factor other than 1 and p, then p is a composite number.
- \blacktriangleright Examples:
	- ▶ $p = 5$; factors: 1, 5; it is prime
	- $p = 6$; factors: 1, 2, 3, 6; it is composite

 \triangleright Prime Numbers: Let p be a positive integer greater than 1. p is a prime number if the only positive factors of p are 1 and p.

- If p has a positive factor other than 1 and p, then p is a composite number.
- ► Examples:
	- $p = 5$; factors: 1, 5; it is prime
	- $p = 6$; factors: 1, 2, 3, 6; it is composite
- \blacktriangleright 1 is neither a prime nor a composite number.

 \blacktriangleright Theorem 1 - Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as a product of two or more primes written in the order of nondecreasing size.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q Q →

- \blacktriangleright Theorem 1 Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as a product of two or more primes written in the order of nondecreasing size.
- \blacktriangleright In other words: every natural number greater than 1 can be written as a product involving only prime factors.

- \blacktriangleright Theorem 1 Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as a product of two or more primes written in the order of nondecreasing size.
- \blacktriangleright In other words: every natural number greater than 1 can be written as a product involving only prime factors.

- \blacktriangleright Examples (prime factorizations):
	- \blacktriangleright 100

- \blacktriangleright Theorem 1 Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as a product of two or more primes written in the order of nondecreasing size.
- \blacktriangleright In other words: every natural number greater than 1 can be written as a product involving only prime factors.

- \blacktriangleright Examples (prime factorizations):
	- \blacktriangleright 100= 4 · 25

- \blacktriangleright Theorem 1 Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as a product of two or more primes written in the order of nondecreasing size.
- \blacktriangleright In other words: every natural number greater than 1 can be written as a product involving only prime factors.

- \blacktriangleright Examples (prime factorizations):
	- \blacktriangleright 100 = 4 · 25 = 2 · 2 · 5 · 5

- \blacktriangleright Theorem 1 Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as a product of two or more primes written in the order of nondecreasing size.
- \blacktriangleright In other words: every natural number greater than 1 can be written as a product involving only prime factors.

- \blacktriangleright Examples (prime factorizations):
	- 100 = $4 \cdot 25 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 \cdot 5^2$

- \blacktriangleright Theorem 1 Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as a product of two or more primes written in the order of nondecreasing size.
- \blacktriangleright In other words: every natural number greater than 1 can be written as a product involving only prime factors.

- \blacktriangleright Examples (prime factorizations):
	- \blacktriangleright 100 = 4 · 25 = 2 · 2 · 5 · 5 = 2² · 5²
	- \blacktriangleright 1024

- \blacktriangleright Theorem 1 Fundamental Theorem of Arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as a product of two or more primes written in the order of nondecreasing size.
- \blacktriangleright In other words: every natural number greater than 1 can be written as a product involving only prime factors.

- \blacktriangleright Examples (prime factorizations):
	- \triangleright 100 = 4 · 25 = 2 · 2 · 5 · 5 = 2² · 5²
	- \blacktriangleright 1024= 2¹⁰

 \triangleright Theorem 2: If n is a composite integer, then n has a prime factor less than or equal to \sqrt{n} .

- \triangleright Theorem 2: If n is a composite integer, then n has a prime factor less than or equal to \sqrt{n} .
- Examples: Find the prime factorizations of (a) 101 and (b) 7007.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright Theorem 3: There are infinitely many primes.

- \triangleright Theorem 3: There are infinitely many primes.
- \triangleright Theorem 4: The number of primes not exceeding x approaches $\frac{x}{\ln x}$ as $x \to \infty$.

► Definition: If a prime number x has the form $x = 2^p - 1$ for some prime number p , then x is a Mersenne prime.

► Definition: If a prime number x has the form $x = 2^p - 1$ for some prime number p , then x is a Mersenne prime.

KORK EXTERNE PROVIDE

Note that $x = 2^p - 1$ for a prime number p does not necessarily imply that x is a prime number.

► Definition: If a prime number x has the form $x = 2^p - 1$ for some prime number p , then x is a Mersenne prime.

- Note that $x = 2^p 1$ for a prime number p does not necessarily imply that x is a prime number.
- \blacktriangleright Examples:

$$
\blacktriangleright 2^3 - 1 = 7
$$

► Definition: If a prime number x has the form $x = 2^p - 1$ for some prime number p , then x is a Mersenne prime.

- Note that $x = 2^p 1$ for a prime number p does not necessarily imply that x is a prime number.
- \blacktriangleright Examples:
	- ► $2^3 1 = 7 \Longrightarrow 7$ is a Mersenne prime.

► Definition: If a prime number x has the form $x = 2^p - 1$ for some prime number p , then x is a Mersenne prime.

- Note that $x = 2^p 1$ for a prime number p does not necessarily imply that x is a prime number.
- \blacktriangleright Examples:
	- ► $2^3 1 = 7 \Longrightarrow$ 7 is a Mersenne prime.
	- \blacktriangleright 2⁵ 1 = 31

► Definition: If a prime number x has the form $x = 2^p - 1$ for some prime number p , then x is a Mersenne prime.

- Note that $x = 2^p 1$ for a prime number p does not necessarily imply that x is a prime number.
- \blacktriangleright Examples:
	- ► $2^3 1 = 7 \implies 7$ is a Mersenne prime.
	- ► $2^5 1 = 31 \implies 31$ is a Mersenne prime.

- ► Definition: If a prime number x has the form $x = 2^p 1$ for some prime number p , then x is a Mersenne prime.
- Note that $x = 2^p 1$ for a prime number p does not necessarily imply that x is a prime number.
- \blacktriangleright Examples:
	- ► $2^3 1 = 7 \implies 7$ is a Mersenne prime.
	- $2^5 1 = 31 \implies 31$ is a Mersenne prime.
	- ► $2^{11} 1 = 2047 = 23 \cdot 89$ (a composite number).

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

If gcd(a, b) = 1, then a and b are relatively prime.

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

- If gcd(a, b) = 1, then a and b are relatively prime.
- Example 1: Find $gcd(24,36)$.

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

- If gcd(a, b) = 1, then a and b are relatively prime.
- Example 1: Find $gcd(24,36)$.
	- ▶ Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

- If gcd(a, b) = 1, then a and b are relatively prime.
- Example 1: Find $gcd(24,36)$.
	- ▶ Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
	- ► Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

- If gcd(a, b) = 1, then a and b are relatively prime.
- Example 1: Find $gcd(24,36)$.
	- ▶ Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
	- ▶ Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
	- \blacktriangleright gcd(24,36) = 12

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

- If gcd(a, b) = 1, then a and b are relatively prime.
- Example 1: Find $gcd(24,36)$.
	- ▶ Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
	- ▶ Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
	- \blacktriangleright gcd(24,36) = 12
- Example 2: Find $gcd(15.22)$.

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

- If gcd(a, b) = 1, then a and b are relatively prime.
- Example 1: Find $gcd(24,36)$.
	- ▶ Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
	- ► Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
	- \blacktriangleright gcd(24,36) = 12
- Example 2: Find $gcd(15.22)$.
	- ► Factors of 15: 1, 3, 5, 15

▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.

- If gcd(a, b) = 1, then a and b are relatively prime.
- Example 1: Find $gcd(24,36)$.
	- ▶ Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
	- ► Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
	- \blacktriangleright gcd(24,36) = 12
- Example 2: Find $gcd(15,22)$.
	- ▶ Factors of 15: 1, 3, 5, 15
	- ▶ Factors of 22: 1, 2, 11, 22

- ▶ Greatest Common Divisor (GCD): Let a and b be non-zero integers. The largest positive integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b and is denoted $gcd(a, b)$.
- If gcd(a, b) = 1, then a and b are relatively prime.
- Example 1: Find $gcd(24,36)$.
	- ▶ Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
	- ► Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
	- \blacktriangleright gcd(24,36) = 12
- Example 2: Find $gcd(15,22)$.
	- ► Factors of 15: 1, 3, 5, 15
	- ▶ Factors of 22: 1, 2, 11, 22
	- ► gcd(15,22) = 1 (therefore 15 and 22 are relatively prime).

 \blacktriangleright Integers $a_1, a_2, \ldots a_n$ are pairwise relatively prime if $\gcd(a_i, a_j)$ $= 1$ for every $1 \le i, j \le n, i \ne j$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright Integers $a_1, a_2, \ldots a_n$ are pairwise relatively prime if $\gcd(a_i, a_j)$ $= 1$ for every $1 \le i, j \le n, i \ne j$.
- \triangleright Example: Problem 17 b: Are 14, 15, and 21 pairwise relatively prime?

- \blacktriangleright Integers $a_1, a_2, \ldots a_n$ are pairwise relatively prime if $\gcd(a_i, a_j)$ $= 1$ for every $1 \le i, j \le n, i \ne j$.
- \triangleright Example: Problem 17 b: Are 14, 15, and 21 pairwise relatively prime?

KORK EXTERNE PROVIDE

• $gcd(14,15) = 1$

- \blacktriangleright Integers $a_1, a_2, \ldots a_n$ are pairwise relatively prime if $\gcd(a_i, a_j)$ $= 1$ for every $1 \leq i, j \leq n, i \neq j$.
- \triangleright Example: Problem 17 b: Are 14, 15, and 21 pairwise relatively prime?

- $gcd(14, 15) = 1$
- $gcd(14,21) = 7$

- \blacktriangleright Integers $a_1, a_2, \ldots a_n$ are pairwise relatively prime if $\gcd(a_i, a_j)$ $= 1$ for every $1 \le i, j \le n, i \ne j$.
- \triangleright Example: Problem 17 b: Are 14, 15, and 21 pairwise relatively prime?

- $gcd(14, 15) = 1$
- $gcd(14,21) = 7$
- $gcd(15,21) = 3$

- \blacktriangleright Integers $a_1, a_2, \ldots a_n$ are pairwise relatively prime if $\gcd(a_i, a_j)$ $= 1$ for every $1 \le i, j \le n, i \ne j$.
- \triangleright Example: Problem 17 b: Are 14, 15, and 21 pairwise relatively prime?

- $gcd(14,15) = 1$
- $gcd(14,21) = 7$
- $gcd(15,21) = 3$
- \triangleright 14, 15, and 21 are not pairwise relatively prime.

▶ Least Common Multiple (LCM): The least common multiple of two integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by $lcm(a, b)$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

▶ Least Common Multiple (LCM): The least common multiple of two integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by $lcm(a, b)$.

ADD YEARS ARA YOUR

Example: 6 and 8

▶ Least Common Multiple (LCM): The least common multiple of two integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by $lcm(a, b)$.

- Example: 6 and 8
	- ▶ Multiples of 6: 6, 12, 18, 24, 30, 36, \dots

▶ Least Common Multiple (LCM): The least common multiple of two integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by $lcm(a, b)$.

- Example: 6 and 8
	- ▶ Multiples of 6: 6, 12, 18, 24, 30, 36, \dots
	- ▶ Multiples of 8: 8, 16, 24, 32, 40, 48, ...

▶ Least Common Multiple (LCM): The least common multiple of two integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by $lcm(a, b)$.

- Example: 6 and 8
	- ▶ Multiples of 6: 6, 12, 18, 24, 30, 36, \dots
	- ▶ Multiples of 8: 8, 16, 24, 32, 40, 48, ...
	- $lcm(6,8) = 24$

If $a = p_1^{a_1} \cdot p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} \cdot p_2^{b_2} \cdots p_n^{b_n}$, then we can compute $gcd(a, b)$ and $lcm(a, b)$ in the following way:

If $a = p_1^{a_1} \cdot p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} \cdot p_2^{b_2} \cdots p_n^{b_n}$, then we can compute $gcd(a, b)$ and $lcm(a, b)$ in the following way: • $gcd(a, b) = p_1^{\min(a_1, b_1)} \cdot p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)}$

If $a = p_1^{a_1} \cdot p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} \cdot p_2^{b_2} \cdots p_n^{b_n}$, then we can compute $gcd(a, b)$ and $lcm(a, b)$ in the following way: ► gcd(a, b) = $p_1^{\min(a_1, b_1)} \cdot p_2^{\min(a_2, b_2)} \cdot \cdot \cdot p_n^{\min(a_n, b_n)}$ • $lcm(a, b) = p_1^{\max(a_1, b_1)} \cdot p_2^{\max(a_2, b_2)} \cdots p_n^{\max(a_n, b_n)}$

If $a = p_1^{a_1} \cdot p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} \cdot p_2^{b_2} \cdots p_n^{b_n}$, then we can compute $gcd(a, b)$ and $lcm(a, b)$ in the following way: ► gcd(a, b) = $p_1^{\min(a_1, b_1)} \cdot p_2^{\min(a_2, b_2)} \cdot \cdot \cdot p_n^{\min(a_n, b_n)}$ • $lcm(a, b) = p_1^{\max(a_1, b_1)} \cdot p_2^{\max(a_2, b_2)} \cdots p_n^{\max(a_n, b_n)}$ Example: $24 = 2^3 \cdot 3^1$ and $36 = 2^2 \cdot 3^2$

If $a = p_1^{a_1} \cdot p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} \cdot p_2^{b_2} \cdots p_n^{b_n}$, then we can compute $gcd(a, b)$ and $lcm(a, b)$ in the following way: ► gcd $(a, b) = p_1^{\min(a_1, b_1)} \cdot p_2^{\min(a_2, b_2)} \cdot \cdot \cdot p_n^{\min(a_n, b_n)}$ 1, P_2 • $lcm(a, b) = p_1^{\max(a_1, b_1)} \cdot p_2^{\max(a_2, b_2)} \cdots p_n^{\max(a_n, b_n)}$ Example: $24 = 2^3 \cdot 3^1$ and $36 = 2^2 \cdot 3^2$ • $gcd(24,36) = 2^{min(3,2)} \cdot 3^{min(1,2)} = 2^2 \cdot 3^1 = 12.$

KORK ERKER ADAM DE SORA

If $a = p_1^{a_1} \cdot p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} \cdot p_2^{b_2} \cdots p_n^{b_n}$, then we can compute $gcd(a, b)$ and $lcm(a, b)$ in the following way: ► gcd(a, b) = $p_1^{\min(a_1, b_1)} \cdot p_2^{\min(a_2, b_2)} \cdot \cdot \cdot p_n^{\min(a_n, b_n)}$ • $lcm(a, b) = p_1^{\max(a_1, b_1)} \cdot p_2^{\max(a_2, b_2)} \cdots p_n^{\max(a_n, b_n)}$ Example: $24 = 2^3 \cdot 3^1$ and $36 = 2^2 \cdot 3^2$ $\text{gcd}(24,36) = 2^{\min(3,2)} \cdot 3^{\min(1,2)} = 2^2 \cdot 3^1 = 12.$ • $lcm(24,36) = 2^{max(3,2)} \cdot 3^{max(1,2)} = 2^3 \cdot 3^2 = 72.$

▶ Theorem 5: Let a and b be positive integers. Then $ab =$ $gcd(a, b)$ ·lcm (a, b) .

 \blacktriangleright There is a more efficient way to compute the greatest common divisor of two positive integers. It is known as the Euclidean Algorithm.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q Q →

- \triangleright There is a more efficient way to compute the greatest common divisor of two positive integers. It is known as the Euclidean Algorithm.
- **Lemma 1**: Let $a = q \cdot b + r$, where a, b, q, r are integers and $0 \le r \le |b|$. Then $gcd(a, b) = gcd(b, r)$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright There is a more efficient way to compute the greatest common divisor of two positive integers. It is known as the Euclidean Algorithm.
- **Lemma 1**: Let $a = q \cdot b + r$, where a, b, q, r are integers and $0 \le r \le |b|$. Then $gcd(a, b) = gcd(b, r)$.

ADD YEARS ARA YOUR

In other words, $gcd(a, b) = gcd(b, a \mod b)$.

Euclidean Algorithm - takes positive integers a and b as input:

$$
x := a
$$

\n
$$
y := b
$$

\n
$$
x \text{ while } y \neq 0 \text{ do}
$$

\n
$$
r := x \mod y
$$

\n
$$
x := y
$$

\n
$$
y := r
$$

\n
$$
y \text{ then}
$$

\n
$$
x \text{ when } x
$$

 \triangleright Theorem 6: Let a, b be positive integers. Then there exist two integers s and t such that $gcd(a, b) = s \cdot a + t \cdot b$.

Lemma 3: If p is prime and $p \mid a_1 \cdot a_2 \cdots a_n$, where each a_i is a positive integer, then $p \mid a_i$ for some *i*.

▶ Practice problems:

Find all primes ≤ 30 .

- ▶ Practice problems:
	- Find all primes \leq 30.
	- ▶ Section 4.3 Problem 15: Find all positive integers less than 30 that are relatively prime to 30.