#let m(math) = align(center)[$#math$] #let pgbreakmsg = align(center, text(blue, weight: "black", size: 1.5em)[See Next Page\ ↓]) #let solve(work, solution) = align( center, )[ #let solution = align(center, block( inset: 5pt, stroke: blue + .3pt, fill: rgb(0, 149, 255, 15%), radius: 4pt, )[#align(left)[#solution]]) #if work == [] [ #solution ] else [ #block(inset: 6pt, radius: 4pt, stroke: luma(50%) + .5pt, fill: luma(90%))[ #align(left, text(font: "Liberation Sans", size: .85em, work)) #solution ] ] ] #let problem-header(number, points) = [== Problem #number. #text(weight: "regular")[[#points points]]] #let problem(number, points, body) = [ == Problem #number. #text(weight: "regular")[[#points points]] #body ] #set page(margin: (x: .4in, y: .4in)) #set table(align: center) _*Price Hiller*_ #v(-.8em) _*zfp106*_ #v(-.8em) Homework Assignment 1 #v(-.8em) CS 2233 #v(-.8em) Section 001 #align( center, block( inset: 6pt, radius: 4pt, stroke: luma(50%) + .5pt, fill: luma(90%), )[If you are interested in viewing the source code of this document, you can do so by clicking #text( blue, link( "https://gitlab.orion-technologies.io/philler/college/-/blob/Development/Spring-2023/CS-2233/Assignment-1/Solution.typ?ref_type=heads", "here", ), ). This document was written in Typst and a bit of infinite _withering_ pain in Neovim, a Vim derivative. Here's to hoping everything below is correct.], ) = Problems #problem( 1, 10, )[ - Complete all participation activities in zyBook sections: 1.1, 1.2, 1.3, 1.4, 1.5. #solve[][Done] ] #problem( 2, 15, )[ Let $p$ denote "You passed CS 2233". Let $q$ denote "You passed CS 3333". Let $r$ denote "You can register for CS 3343". Let $s$ denote "You understand propsitional logic". Use $p$, $q$, $r$, and $s$, to create propositions representing the following statements. a. [5 points] You did not pass CS 2233, but you understand propositional logic. #solve[ This can be alternatively expressed as #align( center, )["You did not pass CS 2233 and you understand propositional logic"] As the "but" in the statement is _not_ an exclusion, it is a conjunction in typical english language. ][$¬p ∧ s$] b. [5 points] You cannot register for CS 3343 only if you have not passed both CS 2233 and CS 3333 #solve[ This can be alternatively expressed as #align( center, )["If you can register for CS 3343 then that implies you have passed CS 2233 and CS 3333"] Which can also be rewritten as #align( center, )["If you have passed CS 2233 and CS 3333 then you can register for CS 3343"] In the original statement, we're negating both sides, thus $¬r$ and $¬p ∧ ¬q$ which can be written as: ][$¬r → ¬(p ∧ q)$] #pgbreakmsg #pagebreak() c. [5 points] If you can register for CS 3343, then you have passed CS 2233 and you understand propositional logic if you passed CS 2233\ #solve[ So this can be more easily understood by "solving" the latter half of the statement first. Expressing "You understand propositional logic if you passed CS 2233" logically would be: #m[s → q] Now slightly rewriting the statement with our logic embedded, "If you can register for CS 3343, then you have passed CS 2233 and $(s → q)$". Then further refining the statement: "If you can register for CS 3343 then $p ∧ (s → q)$. And with a final refinement: $r → p ∧ (s → q)$ Thus the final expression logically would be: ][$r → p ∧ (s → p)$] ] #problem( 3, 40, )[ Show that $(¬q ∧ (p ∨ p)) → ¬q$ is a tautology, i.e. $(¬q ∧ (p ∨ p)) → ¬q ≡ T$ a. [10 points] By creating a truth table // | q | p | ¬q | (p ∨ p) | (¬q ∧ (p ∨ p)) | (¬q ∧ (p ∨ p)) → ¬q | // |---|---|----|---------|----------------|---------------------| // | T | T | F | T | F | T | // | T | F | F | F | F | T | // | F | T | T | T | T | T | // | F | F | T | F | F | T | #solve[ Notice that the furthest right column only has true values, thus the above proposition is a _tautology_ and is always _True_ ][ #table( columns: 6, [q], [p], [¬q], [(p ∨ p)], [(¬q ∧ (p ∨ p))], [(¬q ∧ (p ∨ p)) → ¬q], [$T$], [$T$], [$F$], [$T$], [$F$], [$T$], [$T$], [$F$], [$F$], [$F$], [$F$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$T$], [$F$], [$F$], [$T$], [$F$], [$F$], [$T$], ) ] b. [10 points] By creating a sequence of logical equivalences and annotating each step #solve[][ #grid(columns: 2, row-gutter: .5em, column-gutter: 6em)[ 1. $¬q ∧ (p ∨ p) → ¬q$ ][Starting Proposition][ 2. $(¬q ∧ p) → ¬q ∵ (z ∨ z) ≡ p$ ][Idempotent Law][ 3. $¬(¬q ∧ p) ∨ ¬q ∵ y → z ≡ ¬y ∨ q$ ][Conditional Identitify][ 4. $(¬¬q ∨ ¬p) ∨ q ∵ ¬(z ∧ y) ≡ (¬z ∨ ¬q) $ ][De Morgan's laws][ 5. $(q ∨ ¬p) ∨ ¬q ∵ ¬¬z ≡ z$ ][Double Negation laws][ 6. $(q ∨ ¬q) ∨ ¬p ∵ (z ∨ y) ∨ x ≡ z ∨ (y ∨ x)$ ][Associative Laws][ 7. $T ∨ ¬p ∵ z ∨ ¬z ≡ T ∴ (q ∨ ¬q) ∨ ¬p ≡ T ∨ ¬p$ ][Complement Laws][ 8. $T ∵ T ∨ z ≡ T$ ][Domination Laws] ] #pgbreakmsg #pagebreak(weak: true) Show that $¬q → (p ∧ r) ≡ (¬q → r) ∧ (q ∨ p)$ c. [10 points] By creating a truth table // * ¬q → (p ∧ r) // // | $q$ | $p$ | $r$ | $¬q$ | $(p ∧ r)$ | $¬q → (p ∧ r)$ | // |-----|-----|-----|------|-----------|----------------| // | T | T | T | F | T | T | // | T | T | F | F | F | T | // | T | F | T | F | F | T | // | T | F | F | F | F | T | // | F | T | T | T | T | T | // | F | T | F | T | F | F | // | F | F | T | T | F | F | // | F | F | F | T | F | F | // // // * (¬q → r) ∧ (q ∨ p) // // | $q$ | $p$ | $r$ | $¬q$ | $¬q → r$ | $q ∨ p$ | $(¬q → r) ∧ (q ∨ p)$ | // |-----|-----|-----|------|----------|---------|----------------------| // | T | T | T | F | T | T | T | // | T | T | F | F | T | T | T | // | T | F | T | F | T | T | T | // | T | F | F | F | T | T | T | // | F | T | T | T | T | T | T | // | F | T | F | T | F | T | F | // | F | F | T | T | T | F | F | // | F | F | F | T | T | F | F | #solve[ Notice that the furthest right column only has true values, thus the above statement is a _tautology_ and is always _True_ ][ #table(columns: 2, stroke: none, [Truth table for *$¬q → (p ∧ r)$* #table( columns: 6, [$q$], [$p$], [$r$], [$¬q$], [$(p ∧ r)$], [$¬q → (p ∧ r)$], [$T$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$F$], [$F$], [$F$], [$T$], [$T$], [$F$], [$T$], [$F$], [$F$], [$T$], [$T$], [$F$], [$F$], [$F$], [$F$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$T$], [$F$], [$T$], [$F$], [$T$], [$F$], [$F$], [$F$], [$F$], [$T$], [$T$], [$F$], [$F$], [$F$], [$F$], [$F$], [$T$], [$F$], [$F$], )], [Truth table for *$(¬q → r) ∧ (q ∨ p)$* #table( columns: 7, [$q$], [$p$], [$r$], [$¬q$], [$¬q → r$], [$q ∨ p$], [$(¬q → r) ∧ (q ∨ p)$ ], [$T$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$T$], [$F$], [$F$], [$T$], [$T$], [$T$], [$T$], [$F$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$F$], [$F$], [$F$], [$T$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$T$], [$T$], [$F$], [$T$], [$F$], [$T$], [$F$], [$T$], [$F$], [$F$], [$F$], [$T$], [$T$], [$T$], [$F$], [$F$], [$F$], [$F$], [$F$], [$T$], [$T$], [$F$], [$F$], )]) ] d. [10 points] By creating a sequence of logical equivalences and annotating each step #solve[Notice by step three, both logical sequences are equivalent.][ #table(columns: 2, [ *$¬q → (p ∧ r)$* #grid(columns: 2, row-gutter: .5em, column-gutter: 1em)[ 1. $¬¬q ∨ (p ∧ r)$ ][Conditional Identities][ 2. $q ∨ (p ∧ r)$ ][Double Negation Law][ 3. $(q ∨ p) ∧ (q ∨ r)$ ][Distributive Laws] ], [ #align(left)[*$(¬q → r) ∧ (q ∨ p)$*] #grid(columns: 2, row-gutter: .5em, column-gutter: 1em)[ 1. $(¬¬q ∨ r) ∧ (q ∨ p)$ ][Conditional Identities][ 2. $(q ∨ r) ∧ (q ∨ p)$ ][Double Negation Law][ 3. $(q ∨ p) ∧ (q ∨ r)$ ][Commutative Laws] ]) Thus $¬q → (p ∧ r) ≡ (¬q → r) ∧ (q ∨ p)$ ] ] #pgbreakmsg #pagebreak() #problem( 4, 20, )[ a. [10 points] Show that the $∨$ operator is associative by creating a truth table showing that $p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r$ #solve[Notice that the furthest right columns of both tables are equivalent, therefore the $∨$ operator is associative][ #table(columns: 2, stroke: none, [Truth table for *$p ∨ (q ∨ r)$* #table( columns: 5, [$q$], [$p$], [$r$], [$(q ∨ r)$], [$p ∨ (q ∨ r)$], [$T$], [$T$], [$T$], [$T$], [$T$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$F$], [$F$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$F$], [$T$], [$F$], [$F$], [$T$], [$F$], [$F$], [$T$], [$T$], [$T$], [$F$], [$F$], [$F$], [$F$], [$F$], )], [Truth table for *$(p ∨ q) ∨ r$* #table( columns: 5, [$q$], [$p$], [$r$], [$(p ∨ q)$], [$(p ∨ q) ∨ r$], [$T$], [$T$], [$T$], [$T$], [$T$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$F$], [$F$], [$T$], [$T$], [$F$], [$T$], [$T$], [$T$], [$T$], [$F$], [$T$], [$F$], [$T$], [$T$], [$F$], [$F$], [$T$], [$F$], [$T$], [$F$], [$F$], [$F$], [$F$], [$F$], )]) ] b. [10 points] The NOR operator $↓$ is the negation of a disjunction: $p ↓ q ≡ ¬(p ∨ q)$. Its truth table is: #table( columns: 3, [$p$], [$q$], [$p ↓ q$], [$T$], [$T$], [$F$], [$T$], [$F$], [$F$], [$F$], [$T$], [$F$], [$F$], [$F$], [$T$], ) Show that The NOR operator is not associative by creating a truth table showing that it is not the case that *$p ↓ (q ↓ r) ≡ (p ↓ q) ↓ r$*. In other words, create a truth table showing that *$(p ↓ (q ↓ r)) ↔ ((p ↓ q) ↓ r)$* is not a tautology. #solve[Notice that the two tables' outputs are different in the furthest righthand column. If the NOR were associative, the furthest right columns of both tables would be identical. Since this is not the case, the NOR operator isn't associative.][#table(columns: 2, stroke: none, [Truth table for *$p ↓ (q ↓ r)$* #table( columns: 5, [$q$], [$p$], [$r$], [$(q ↓ r)$], [$p ↓ (q ↓ r)$], [$T$], [$T$], [$T$], [$F$], [$F$], [$T$], [$T$], [$F$], [$F$], [$F$], [$T$], [$F$], [$T$], [$F$], [$T$], [$T$], [$F$], [$F$], [$F$], [$T$], [$F$], [$T$], [$T$], [$F$], [$F$], [$F$], [$T$], [$F$], [$T$], [$F$], [$F$], [$F$], [$T$], [$F$], [$T$], [$F$], [$F$], [$F$], [$T$], [$F$], )], [Truth table for *$(p ↓ q) ↓ r$* #table( columns: 5, [$q$], [$p$], [$r$], [$(p ↓ q)$], [$(p ↓ q) ↓ r$], [$T$], [$T$], [$T$], [$F$], [$F$], [$T$], [$T$], [$F$], [$F$], [$T$], [$T$], [$F$], [$T$], [$F$], [$F$], [$T$], [$F$], [$F$], [$F$], [$T$], [$F$], [$T$], [$T$], [$F$], [$F$], [$F$], [$T$], [$F$], [$F$], [$T$], [$F$], [$F$], [$T$], [$T$], [$F$], [$F$], [$F$], [$F$], [$T$], [$F$], )])] ]