Let A and B be two events. If the probability that B
occurs is not affected by the occurence or non-occurence
of A, then we say that A and B are independent.

Example: Consider two flips of a coin. Let A denote
the event that the first flip is heads, and let B denote
the event that the second flip is tails.

If A and B are independent events, then
P(ANB)= P(A)- P(B)



Consider the random experiment where we flip a coin
until we get a head
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Consider rolling a single die. Let A be the event that
we roll a number larger than 3, and let B be the event

that we roll an odd number. What is P(A), P(B), and
P(AN B)?
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Conditional Probability: Let P(B|A) denote the
probability that B occurs given that A occured.

Note that since we know that A has occured, the sam-
ple space is no longer all of €2, and this changes the
probability that B has also occured.
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Monte Hall problem: Suppose you're on a game
show, and you're given the choice of three doors. Be-
hind one door is a car; behind the others, goats. Once
you choose your door, you are shown one of the doors
that you did not choose that contains a goat. You are
now given the option of staying on your door or switch-
ing to some other door. What should you do?

G b [
P(car | stay) = P(car | stay & initial choice is a car) *
P(initial choice is a car) + P(car | stay & initial choice
is a goat) * P(initial choice isagoat)=1*1/3+0"*
2/3=1/3

P(car | switch) = P(car | switch & initial choice is a
car) * P(initial choice is a car) + P(car | switch & initial
choice is a goat) * P(initial choice is a goat) =0 * 1/3

+1*2/3=2/3
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Bayes’ Theorem:

(A1) - P BIA)P(-&P( A)




Example: The players of a soccer league are tested for
drugs using a special test. With this test, 98% of play-
ers who take steroids test positive. 12% of players not
taking steroids test positive. It is estimated that 5% of
all players take steroids. What is the probability that
a player who tests positive takes steroids?
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P(RIA) - P(A)
P(AlR) = P?&)

P(A and B) + P((not A) and B) — Law of total probability
P(A)*P(BIA) + P(not A)*P(B | not A)
P(A)*P(BIA) + (1 - P(A))*P(B | not A)
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= P(A and B) + P((not A) and B) — Law of total probability


