Section 8.15 Solving Linear Homogeneous Recurrence Relations

Solving a Recurrence Relation

- Recall that a recurrence relation describes a sequence:
 - 0, 1, 1, 2, 3, 5, 8, ... $f_0 = 0, f_1 = 1$ $f_n = f_{n-1} + f_{n-2}$
- A recurrence relation is <u>solved</u> if there is an explicit (or closed) formula that generates its terms without reference to previous terms

• A <u>closed formula</u> is a formula that uses a fixed number of terms

Solving a Recurrence Relation

• Example: $s_n = \sum_{i=0}^n i$ can be described as a recurrence relation:

$$s_0 = 0$$

$$s_n = s_{n-1} + n \text{ when } n \ge 1$$

This recurrence relation is solved by the following closed formula:

$$s_n = \frac{n(n+1)}{2}$$

Solving a Recurrence Relation

• Another example: Let g_n be defined by the following recurrence relation:

$$g_0 = 2$$

$$g_n = 5g_{n-1} \text{ when } n \ge 1$$

This recurrence relation is solved by the following closed formula:

$$g_n = 2 \cdot 5^n$$

This can be shown by induction on the natural numbers

• A <u>linear homogeneous recurrence relation of degree k</u> has the following form:

$$f_n = c_1 f_{n-1} + c_2 f_{n-2} + \dots + c_k f_{n-k}$$

Where:

- Each c_i is a constant
- $c_k \neq 0$

Linear because each c_i is a constant and each f_i is not raised to a power Homogeneous because each term of the sum has the same form: $c_i f_{n-i}$

• The following are examples of linear homogenous recurrence relations

- $P_n = (1.11)P_{n-1}$ (of degree 1)
- $f_n = f_{n-1} + f_{n-2}$ (of degree 2)
- $a_n = a_{n-5}$ (of degree 5)

• The following are NOT examples of linear homogenous recurrence relations

•
$$a_n = a_{n-1} + a_{n-2}^2$$

- $H_n = 2H_{n-1} + 2$
- $B_n = nB_{n-1}$

• The linear homogenous recurrence relation of degree k: $f_n = c_1 f_{n-1} + c_2 f_{n-2} + \dots + c_k f_{n-k}$

has k initial conditions:

$$f_0 = C_0, f_1 = C_1, \dots f_{k-1} = C_{k-1}$$

Importance of Initial Conditions

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, ... $f_n = f_{n-1} + f_{n-2}$

$$f_0 = 0, f_1 = 1$$

• Lucas sequence: 2, 1, 3, 4, 7, 11, 18, ...

$$l_n = l_{n-1} + l_{n-2}$$

$$l_0 = 2, \ l_1 = 1$$

• Both the Fibonacci and Lucas sequences satisfy the equation:

$$a_n = a_{n-1} + a_{n-2}$$

$$f_n = f_{n-1} + f_{n-2}$$

• Both the Fibonacci and Lucas sequences satisfy the equation:

$$a_n = a_{n-1} + a_{n-2}$$

$$f_n = f_{n-1} + f_{n-2}$$
$$g_n = 2f_n$$

• Both the Fibonacci and Lucas sequences satisfy the equation:

$$a_n = a_{n-1} + a_{n-2}$$

$$f_n = f_{n-1} + f_{n-2}$$

$$g_n = 2f_n$$

$$= 2(f_{n-1} + f_{n-2})$$

• Both the Fibonacci and Lucas sequences satisfy the equation:

$$a_n = a_{n-1} + a_{n-2}$$

$$f_n = f_{n-1} + f_{n-2}$$

$$g_n = 2f_n$$

$$= 2(f_{n-1} + f_{n-2})$$

$$= 2f_{n-1} + 2f_{n-2}$$

• Both the Fibonacci and Lucas sequences satisfy the equation:

$$a_n = a_{n-1} + a_{n-2}$$

$$f_n = f_{n-1} + f_{n-2}$$

$$g_n = 2f_n$$

$$= 2(f_{n-1} + f_{n-2})$$

$$= 2f_{n-1} + 2f_{n-2}$$

$$= g_{n-1} + g_{n-2}$$

$$f_n = f_{n-1} + f_{n-2} \qquad l_n = l_{n-1} + l_{n-2}$$
$$g_n = sf_n + tl_n$$

$$f_n = f_{n-1} + f_{n-2} \qquad l_n = l_{n-1} + l_{n-2}$$
$$g_n = sf_n + tl_n$$
$$= sf_{n-1} + sf_{n-2} + tl_{n-1} + tl_{n-2}$$

$$f_n = f_{n-1} + f_{n-2} \qquad l_n = l_{n-1} + l_{n-2}$$

$$g_n = sf_n + tl_n$$

$$= sf_{n-1} + sf_{n-2} + tl_{n-1} + tl_{n-2}$$

$$= sf_{n-1} + tl_{n-1} + sf_{n-2} + tl_{n-2}$$

$$f_n = f_{n-1} + f_{n-2} \qquad l_n = l_{n-1} + l_{n-2}$$

$$g_n = sf_n + tl_n$$

$$= sf_{n-1} + sf_{n-2} + tl_{n-1} + tl_{n-2}$$

$$= sf_{n-1} + tl_{n-1} + sf_{n-2} + tl_{n-2}$$

$$= (sf_{n-1} + tl_{n-1}) + (sf_{n-2} + tl_{n-2})$$

$$f_n = f_{n-1} + f_{n-2} \qquad l_n = l_{n-1} + l_{n-2}$$

$$g_n = sf_n + tl_n$$

$$= sf_{n-1} + sf_{n-2} + tl_{n-1} + tl_{n-2}$$

$$= sf_{n-1} + tl_{n-1} + sf_{n-2} + tl_{n-2}$$

$$= (sf_{n-1} + tl_{n-1}) + (sf_{n-2} + tl_{n-2})$$

$$= g_{n-1} + g_{n-2}$$

 In general, if two sequences satisfy a linear homogeneous recurrence relation, then any linear combination of them also satisfies that linear homogeneous recurrence relation

$$f_n = f_{n-1} + f_{n-2} \qquad l_n = l_{n-1} + l_{n-2}$$

$$g_n = sf_n + tl_n$$

$$= sf_{n-1} + sf_{n-2} + tl_{n-1} + tl_{n-2}$$

$$= sf_{n-1} + tl_{n-1} + sf_{n-2} + tl_{n-2}$$

$$= (sf_{n-1} + tl_{n-1}) + (sf_{n-2} + tl_{n-2})$$

$$= g_{n-1} + g_{n-2}$$

• From the earlier example:

$$g_0 = 2$$

$$g_n = 5g_{n-1}$$
 when $n \ge 1$

We see that $g_n = 5g_{n-1}$ suggests a solution of the form: $g_n = 5^n$ and that from the initial condition $g_0 = 2$, we conclude $g_n = 2 \cdot 5^n$

• We then guess that all explicit solutions of linear homogenous recurrence relations involve $a_n = r^n$ for some real number r

• The guessed relationship: $a_n = r^n$ implies for a recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$:

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}$$

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}$$

$$\frac{1}{r^{n-k}} r^n = \frac{1}{r^{n-k}} \left(c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k} \right)$$

$$\begin{aligned} a_n &= c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} \\ r^n &= c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k} \\ \frac{1}{r^{n-k}} r^n &= \frac{1}{r^{n-k}} \left(c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k} \right) \\ r^k &= c_1 r^{k-1} + c_2 r^{k-2} + \dots + c_k \end{aligned}$$

$$\begin{aligned} a_n &= c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} \\ r^n &= c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k} \\ \frac{1}{r^{n-k}} r^n &= \frac{1}{r^{n-k}} \left(c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k} \right) \\ r^k &= c_1 r^{k-1} + c_2 r^{k-2} + \dots + c_k \\ r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k &= 0 \end{aligned}$$

• The guessed relationship: $a_n = r^n$ implies for a recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$:

$$\begin{aligned} a_n &= c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} \\ r^n &= c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k} \\ \frac{1}{r^{n-k}} r^n &= \frac{1}{r^{n-k}} \left(c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k} \right) \\ r^k &= c_1 r^{k-1} + c_2 r^{k-2} + \dots + c_k \\ r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k &= 0 \end{aligned}$$

r is a root of the polynomial $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k$

Characteristic Equations and Characteristic Roots

- $r^k c_1 r^{k-1} c_2 r^{k-2} \dots c_k = 0$ is called the <u>characteristic</u> equation
- The solutions to $r^k c_1 r^{k-1} c_2 r^{k-2} \dots c_k = 0$ are called the <u>characteristic roots</u>

$$r^n = r^{n-1} + 2r^{n-2}$$

$$r^{n} = r^{n-1} + 2r^{n-2}$$
$$\frac{1}{r^{n-2}}(r^{n}) = \frac{1}{r^{n-2}}(r^{n-1} + 2r^{n-2})$$

$$r^{n} = r^{n-1} + 2r^{n-2}$$

$$\frac{1}{r^{n-2}}(r^{n}) = \frac{1}{r^{n-2}}(r^{n-1} + 2r^{n-2})$$

$$r^{2} = r^{1} + 2r^{0}$$

$$r^{n} = r^{n-1} + 2r^{n-2}$$

$$\frac{1}{r^{n-2}}(r^{n}) = \frac{1}{r^{n-2}}(r^{n-1} + 2r^{n-2})$$

$$r^{2} = r^{1} + 2r^{0}$$

$$r^{2} = r + 2$$

$$r^{n} = r^{n-1} + 2r^{n-2}$$

$$\frac{1}{r^{n-2}}(r^{n}) = \frac{1}{r^{n-2}}(r^{n-1} + 2r^{n-2})$$

$$r^{2} = r^{1} + 2r^{0}$$

$$r^{2} = r + 2$$

$$r^{2} - r - 2 = 0$$

• Another example: What is the characteristic equation of $a_n = 3a_{n-1} - 7a_{n-2}$?

• Another example: What is the characteristic equation of $a_n = 3a_{n-1} - 7a_{n-2}$? Assuming $a_n = r^n$:

$$r^n = 3r^{n-1} - 7r^{n-2}$$

• Another example: What is the characteristic equation of $a_n = 3a_{n-1} - 7a_{n-2}$? Assuming $a_n = r^n$: $r^n = 2r^{n-1} - 7r^{n-2}$

$$\frac{1}{r^{n-2}}(r^n) = \frac{1}{r^{n-2}}\left(3r^{n-1} - 7r^{n-2}\right)$$

• Another example: What is the characteristic equation of $a_n = 3a_{n-1} - 7a_{n-2}$? Assuming $a_n = r^n$:

$$r^{n} = 3r^{n-1} - 7r^{n-2}$$

$$\frac{1}{r^{n-2}}(r^{n}) = \frac{1}{r^{n-2}}(3r^{n-1} - 7r^{n-2})$$

$$r^{2} = 3r^{1} - 7r^{0}$$

• Another example: What is the characteristic equation of $a_n = 3a_{n-1} - 7a_{n-2}$?

Assuming $a_n = r^n$:

$$r^{n} = 3r^{n-1} - 7r^{n-2}$$

$$\frac{1}{r^{n-2}}(r^{n}) = \frac{1}{r^{n-2}}(3r^{n-1} - 7r^{n-2})$$

$$r^{2} = 3r^{1} - 7r^{0}$$

$$r^{2} = 3r - 7$$

• Another example: What is the characteristic equation of $a_n = 3a_{n-1} - 7a_{n-2}$? Assuming $a_n = r^n$:

$$r^{n} = 3r^{n-1} - 7r^{n-2}$$

$$\frac{1}{r^{n-2}}(r^{n}) = \frac{1}{r^{n-2}}(3r^{n-1} - 7r^{n-2})$$

$$r^{2} = 3r^{1} - 7r^{0}$$

$$r^{2} = 3r - 7$$

$$r^{2} - 3r + 7 = 0$$

Completing the Solution

- Each characteristic root yields a value for r in the term r^n .
- We can then create a linear combination of the terms and use the initial conditions to find leading coefficients of the r^n terms

• What is the solution to the following recurrence relation:

$$a_0 = 2$$
$$a_1 = 3$$
$$a_n = a_{n-1} + 2a_{n-2}$$

The characteristic equation is:

$$r^{n} = r^{n-1} + 2r^{n-2}$$
$$r^{2} = r + 2$$
$$r^{2} - r - 2 = 0$$

• The characteristic equation can be factored and solved

$$r^{2} - r - 2 = 0$$

 $(r - 2)(r + 1) = 0$
 $r = -1, 2$

• Quadratic formula for $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 Use the initial conditions to solve for the coefficients of the linear combination of rⁿ:

$$r = -1, 2$$

• There are two solutions:

$$a_n = (-1)^n \qquad \qquad a_n = 2^n$$

• Linear combinations of the two solutions are also solutions

 Use the initial conditions to solve for the coefficients of the linear combination of rⁿ:

$$r = -1, 2$$

 $a_n = s \cdot (-1)^n + t \cdot (2)^n$

 Use the initial conditions to solve for the coefficients of the linear combination of rⁿ:

$$r = -1, 2$$

$$a_n = s \cdot (-1)^n + t \cdot (2)^n$$

Use the initial cases to solve for *s* and *t*

$$a_0 = 2$$

 $a_1 = 3$

$$r = -1, 2$$

$$a_n = s \cdot (-1)^n + t \cdot (2)^n$$

$$a_0 = 2 = s \cdot (-1)^0 + t \cdot (2)^0$$

$$r = -1, 2$$

$$a_n = s \cdot (-1)^n + t \cdot (2)^n$$

 $a_0 = 2 = s \cdot (-1)^0 + t \cdot (2)^0$

$$= 2 = 3 (1) + t$$
$$= s + t$$

$$r = -1, 2$$

$$a_n = s \cdot (-1)^n + t \cdot (2)^n$$

$$a_0 = 2 = s \cdot (-1)^0 + t \cdot (2)^0$$

= s + t
$$a_1 = 3 = s \cdot (-1)^1 + t \cdot (2)^1$$

$$r = -1, 2$$

$$a_n = s \cdot r^n + t \cdot r^n$$
$$a_n = s \cdot (-1)^n + t \cdot (2)^n$$

$$a_0 = 2 = s \cdot (-1)^0 + t \cdot (2)^0$$

= s + t
$$a_1 = 3 = s \cdot (-1)^1 + t \cdot (2)^1$$

= -s + 2 t

$$2 = s + t$$

$$3 = -s + 2t$$

$$2 = s + t$$

$$3 = -s + 2t$$

$$s = 1/3$$

 $t = 5/3$

• Substitute the values for s and t into the equation for a_n

$$a_n = 1/3 \cdot (-1)^n + 5/3 \cdot (2)^n$$

• Check the solution

n	$a_0 = 2$ $a_1 = 3$ $a_n = a_{n-1} + 2a_{n-2}$	$a_n = \frac{1}{3} \cdot (-1)^n + \frac{5}{3} \cdot (2)^n$
0	2	$\frac{1}{3} \cdot (-1)^0 + \frac{5}{3} \cdot (2)^0 = 2$
1	3	$\frac{1}{3} \cdot (-1)^1 + \frac{5}{3} \cdot (2)^1 = 3$
2	$3 + 2 \cdot 2 = 7$	$\frac{1}{3} \cdot (-1)^2 + \frac{5}{3} \cdot (2)^2 = 7$
3	$7 + 2 \cdot 3 = 13$	$\frac{1}{3} \cdot (-1)^3 + \frac{5}{3} \cdot (2)^3 = 13$
4	$13 + 2 \cdot 7 = 27$	$\frac{1}{3} \cdot (-1)^4 + \frac{5}{3} \cdot (2)^4 = 27$
5	$27 + 2 \cdot 13 = 53$	$\frac{1}{3} \cdot (-1)^5 + \frac{5}{3} \cdot (2)^5 = 53$

Example Summary

1. Start with a recurrence relation with initial conditions:

$$a_0 = 2$$
$$a_1 = 3$$
$$a_n = a_{n-1} + 2a_{n-2}$$

2. Assume a solution starting from:

$$a_n = r^n$$

3. Derive the characteristic equation from the recurrence relation:

$$r^2 - r - 2 = 0$$

4. Solve the equation:

$$r = -1, 2$$

There will be as many roots as the degree of the recurrence relation

Example Summary

5. Express the solution as a linear combination of the original assumption $a_n = r^n$:

$$a_n = s \cdot (-1)^n + t \cdot (2)^n$$

6. Apply the initial conditions to get simultaneous equations

$$a_0 = 2 = s \cdot (-1)^0 + t \cdot (2)^0$$

 $a_1 = 3 = s \cdot (-1)^1 + t \cdot (2)^1$

7. Solve the simultaneous equations to get the coefficients s and t

$$s = 1/3$$
 $t = 5/3$

8. Substitute to get the final solution

$$a_n = 1/3 \cdot (-1)^n + 5/3 \cdot (2)^n$$

- If a root, r, appears twice as a solution to a polynomial, then both r^n and nr^n are solutions to the recurrence relation
- For each additional occurrence of a root include an additional factor of n: rⁿ, nrⁿ, n²rⁿ, n³rⁿ ...
- Example: What is the solution to the recurrence relation:

$$f_0 = 2$$

$$f_1 = 3$$

$$f_n = 4f_{n-1} - 4f_{n-2}$$

- If a root, r, appears twice as a solution to a polynomial, then both r^n and nr^n are solutions to the recurrence relation
- For each additional occurrence of a root include an additional factor of n: rⁿ, nrⁿ, n²rⁿ, n³rⁿ ...
- Example: What is the solution to the recurrence relation:

$$r^{n} = 4r^{n-1} - 4r^{n-2}$$

$$r^{n} - 4r^{n-1} + 4r^{n-2} = 0$$

$$r^{2} - 4r^{1} + 4 = 0$$

$$(r-2)(r-2) = 0$$

$$r = 2, 2$$

- If a root, r, appears twice as a solution to a polynomial, then both r^n and nr^n are solutions to the recurrence relation
- For each additional occurrence of a root include an additional factor of n: rⁿ, nrⁿ, n²rⁿ, n³rⁿ ...
- Example: What is the solution to the recurrence relation:

$$f_n = s(2)^n + tn(2)^n$$

$$f_{0} = 2 = s(2)^{0} + t(0)(2)^{0}$$

$$2 = s$$

$$f_{1} = 3 = s(2)^{1} + t(1)(2)^{1}$$

$$3 = 4 + 2t$$

$$-1/2 = t$$

$$f_{n} = 2 \cdot 2^{n}$$

 $-(1/2)n2^{n}$

- If a root, r, appears twice as a solution to a polynomial, then both r^n and nr^n are solutions to the recurrence relation
- Another example: What is the solution to the recurrence relation with the following characteristic equation:

$$(r-2)^3 (r-3)^2 = 0$$

 $r = 2, 2, 2, 3, 3$

$$a_n = s2^n + tn2^n + un^22^n + v3^n + wn3^n$$

Use the initial conditions to solve for s, t, u, v, w