
Section 8.15
Solving Linear Homogeneous 

Recurrence Relations

1



2

Solving a Recurrence Relation

• Recall that a recurrence relation describes a sequence:

0, 1, 1, 2, 3, 5, 8, …

𝑓0 = 0,  𝑓1 = 1
𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2

• A recurrence relation is solved if there is an explicit (or closed) formula 
that generates its terms without reference to previous terms

• A closed formula is a formula that uses a fixed number of terms
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Solving a Recurrence Relation

• Example: 𝑠𝑛 = σ𝑖=0
𝑛 𝑖 can be described as a recurrence relation:

𝑠0 = 0
𝑠𝑛 = 𝑠𝑛−1 + 𝑛  when 𝑛 ≥ 1

This recurrence relation is solved by the following closed formula:

𝑠𝑛 =
𝑛(𝑛 + 1)
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Solving a Recurrence Relation

• Another example: Let 𝑔𝑛be defined by the following recurrence 
relation:

𝑔0 = 2

𝑔𝑛 = 5𝑔𝑛−1  when 𝑛 ≥ 1

This recurrence relation is solved by the following closed formula:

𝑔𝑛 = 2 ⋅ 5𝑛

This can be shown by induction on the natural numbers
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Linear Homogeneous Recurrence Relations

• A linear homogeneous recurrence relation of degree k  has the following 
form:

𝑓𝑛 = 𝑐1𝑓𝑛−1 + 𝑐2𝑓𝑛−2 + ⋯ + 𝑐𝑘𝑓𝑛−𝑘

Where:

• Each 𝑐𝑖 is a constant

• 𝑐𝑘 ≠ 0

Linear because each 𝑐𝑖 is a constant and each 𝑓𝑖  is not raised to a power

Homogeneous because each term of the sum has the same form: 𝑐𝑖𝑓𝑛−𝑖



• The following are examples of linear homogenous recurrence 
relations

• 𝑃𝑛 = 1.11 𝑃𝑛−1     (of degree 1)

• 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2    (of degree 2)

• 𝑎𝑛 = 𝑎𝑛−5                (of degree 5)
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Linear Homogeneous Recurrence Relations



• The following are NOT examples of linear homogenous recurrence 
relations

• 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2
2

• 𝐻𝑛 = 2𝐻𝑛−1 + 2

• 𝐵𝑛 = 𝑛𝐵𝑛−1           

7

Linear Homogeneous Recurrence Relations



• The linear homogenous recurrence relation of degree 𝑘:

𝑓𝑛 = 𝑐1𝑓𝑛−1 + 𝑐2𝑓𝑛−2 + ⋯ + 𝑐𝑘𝑓𝑛−𝑘

has 𝑘 initial conditions:

 𝑓0 = 𝐶0,   𝑓1 = 𝐶1, …    𝑓𝑘−1 = 𝐶𝑘−1
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Linear Homogeneous Recurrence Relations



• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, …

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2

𝑓0 = 0,   𝑓1 = 1

• Lucas sequence: 2, 1, 3, 4, 7, 11, 18, …

𝑙𝑛 = 𝑙𝑛−1 + 𝑙𝑛−2

𝑙0 = 2,   𝑙1 = 1
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Importance of Initial Conditions



• Both the Fibonacci and Lucas sequences satisfy the equation:

𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 

• If the values of the Fibonacci sequence are doubled, they still satisfy 
the equation: 
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Linear Combinations of Sequences 

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2

𝑔𝑛 = 2𝑓𝑛

= 2 𝑓𝑛−1 + 𝑓𝑛−2

= 2𝑓𝑛−1 + 2𝑓𝑛−2

= 𝑔𝑛−1 + 𝑔𝑛−2
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Linear Combinations of Sequences 

• If both the Fibonacci and Lucas sequences are multiplied by 
different constants and added together, their sum also satisfies the 
recurrence relation 

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 𝑙𝑛 = 𝑙𝑛−1 + 𝑙𝑛−2

𝑔𝑛 = 𝑠𝑓𝑛 +𝑡𝑙𝑛

= 𝑠𝑓𝑛−1 + 𝑠𝑓𝑛−2 + 𝑡𝑙𝑛−1 + 𝑡𝑙𝑛−2

= 𝑠𝑓𝑛−1 + 𝑡𝑙𝑛−1 + 𝑠𝑓𝑛−2 + 𝑡𝑙𝑛−2

= 𝑠𝑓𝑛−1 + 𝑡𝑙𝑛−1 + 𝑠𝑓𝑛−2 + 𝑡𝑙𝑛−2

= 𝑔𝑛−1 +𝑔𝑛−2
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Linear Combinations of Sequences 
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Linear Combinations of Sequences 

• In general, if two sequences satisfy a linear homogeneous 
recurrence relation, then any linear combination of them also 
satisfies that linear homogeneous recurrence relation

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 𝑙𝑛 = 𝑙𝑛−1 + 𝑙𝑛−2

𝑔𝑛 = 𝑠𝑓𝑛 +𝑡𝑙𝑛

= 𝑠𝑓𝑛−1 + 𝑠𝑓𝑛−2 + 𝑡𝑙𝑛−1 + 𝑡𝑙𝑛−2

= 𝑠𝑓𝑛−1 + 𝑡𝑙𝑛−1 + 𝑠𝑓𝑛−2 + 𝑡𝑙𝑛−2

= 𝑠𝑓𝑛−1 + 𝑡𝑙𝑛−1 + 𝑠𝑓𝑛−2 + 𝑡𝑙𝑛−2

= 𝑔𝑛−1 +𝑔𝑛−2



• From the earlier example:

𝑔0 = 2

𝑔𝑛 = 5𝑔𝑛−1  when 𝑛 ≥ 1

We see that 𝑔𝑛 = 5𝑔𝑛−1 suggests a solution of the form: 𝑔𝑛 = 5𝑛 and that 
from the initial condition 𝑔0 = 2, we conclude 𝑔𝑛 = 2 ⋅ 5𝑛

• We then guess that all explicit solutions of linear homogenous recurrence 
relations involve 𝑎𝑛 = 𝑟𝑛 for some real number 𝑟
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Solving Linear Homogeneous Recurrence Relations



• The guessed relationship: 𝑎𝑛 = 𝑟𝑛 implies for a recurrence relation 𝑎𝑛 =
𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘:

𝑟 is a root of the polynomial 𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘
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𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘

𝑟𝑛 = 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 + ⋯ + 𝑐𝑘𝑟𝑛−𝑘

1

𝑟𝑛−𝑘 𝑟𝑛 =
1

𝑟𝑛−𝑘 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 + ⋯ + 𝑐𝑘𝑟𝑛−𝑘

𝑟𝑘 = 𝑐1𝑟𝑘−1 + 𝑐2𝑟𝑘−2 + ⋯ + 𝑐𝑘

𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0
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• The guessed relationship: 𝑎𝑛 = 𝑟𝑛 implies for a recurrence relation 𝑎𝑛 =
𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘:

𝑟 is a root of the polynomial 𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘

28

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘

𝑟𝑛 = 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 + ⋯ + 𝑐𝑘𝑟𝑛−𝑘

1

𝑟𝑛−𝑘 𝑟𝑛 =
1

𝑟𝑛−𝑘 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 + ⋯ + 𝑐𝑘𝑟𝑛−𝑘

𝑟𝑘 = 𝑐1𝑟𝑘−1 + 𝑐2𝑟𝑘−2 + ⋯ + 𝑐𝑘

𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0
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• 𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0 is called the characteristic 
equation

• The solutions to 𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0 are called the 
characteristic roots

29

Characteristic Equations and Characteristic Roots



• Example: What is the characteristic equation of 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

30

𝑟𝑛 = 𝑟𝑛−1 +2𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
 𝑟𝑛−1+2𝑟𝑛−2

𝑟2 = 𝑟1 + 2𝑟0

𝑟2 = 𝑟 + 2

𝑟2 − 𝑟 − 2 = 0
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• Example: What is the characteristic equation of 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

31

𝑟𝑛 = 𝑟𝑛−1 +2𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
 𝑟𝑛−1+2𝑟𝑛−2

𝑟2 = 𝑟1 + 2𝑟0

𝑟2 = 𝑟 + 2

𝑟2 − 𝑟 − 2 = 0
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• Example: What is the characteristic equation of 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:
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𝑟𝑛 = 𝑟𝑛−1 +2𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
 𝑟𝑛−1+2𝑟𝑛−2

𝑟2 = 𝑟1 + 2𝑟0

𝑟2 = 𝑟 + 2

𝑟2 − 𝑟 − 2 = 0
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• Example: What is the characteristic equation of 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

33

𝑟𝑛 = 𝑟𝑛−1 +2𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
 𝑟𝑛−1+2𝑟𝑛−2

𝑟2 = 𝑟1 + 2𝑟0

𝑟2 = 𝑟 + 2

𝑟2 − 𝑟 − 2 = 0
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• Example: What is the characteristic equation of 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

34

𝑟𝑛 = 𝑟𝑛−1 +2𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
 𝑟𝑛−1+2𝑟𝑛−2

𝑟2 = 𝑟1 + 2𝑟0

𝑟2 = 𝑟 + 2

𝑟2 − 𝑟 − 2 = 0
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• Example: What is the characteristic equation of 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

35

𝑟𝑛 = 𝑟𝑛−1 +2𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
 𝑟𝑛−1+2𝑟𝑛−2

𝑟2 = 𝑟1 + 2𝑟0

𝑟2 = 𝑟 + 2

𝑟2 − 𝑟 − 2 = 0

Solving Linear Homogeneous Recurrence Relations



• Another example: What is the characteristic equation of 𝑎𝑛 =
3𝑎𝑛−1 − 7𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

36

𝑟𝑛 = 3𝑟𝑛−1 − 7𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
3𝑟𝑛−1 − 7𝑟𝑛−2

𝑟2 = 3𝑟1 − 7𝑟0

𝑟2 = 3𝑟 − 7

𝑟2 − 3𝑟 + 7 = 0
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• Another example: What is the characteristic equation of 𝑎𝑛 =
3𝑎𝑛−1 − 7𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

37

𝑟𝑛 = 3𝑟𝑛−1 − 7𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
3𝑟𝑛−1 − 7𝑟𝑛−2

𝑟2 = 3𝑟1 − 7𝑟0

𝑟2 = 3𝑟 − 7

𝑟2 − 3𝑟 + 7 = 0
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• Another example: What is the characteristic equation of 𝑎𝑛 =
3𝑎𝑛−1 − 7𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

38

𝑟𝑛 = 3𝑟𝑛−1 − 7𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
3𝑟𝑛−1 − 7𝑟𝑛−2

𝑟2 = 3𝑟1 − 7𝑟0

𝑟2 = 3𝑟 − 7

𝑟2 − 3𝑟 + 7 = 0
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• Another example: What is the characteristic equation of 𝑎𝑛 =
3𝑎𝑛−1 − 7𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

39

𝑟𝑛 = 3𝑟𝑛−1 − 7𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
3𝑟𝑛−1 − 7𝑟𝑛−2

𝑟2 = 3𝑟1 − 7𝑟0

𝑟2 = 3𝑟 − 7

𝑟2 − 3𝑟 + 7 = 0
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• Another example: What is the characteristic equation of 𝑎𝑛 =
3𝑎𝑛−1 − 7𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

40

𝑟𝑛 = 3𝑟𝑛−1 − 7𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
3𝑟𝑛−1 − 7𝑟𝑛−2

𝑟2 = 3𝑟1 − 7𝑟0

𝑟2 = 3𝑟 − 7

𝑟2 − 3𝑟 + 7 = 0
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• Another example: What is the characteristic equation of 𝑎𝑛 =
3𝑎𝑛−1 − 7𝑎𝑛−2?

Assuming 𝑎𝑛 = 𝑟𝑛:

41

𝑟𝑛 = 3𝑟𝑛−1 − 7𝑟𝑛−2

1

𝑟𝑛−2
(𝑟𝑛) =

1

𝑟𝑛−2
3𝑟𝑛−1 − 7𝑟𝑛−2

𝑟2 = 3𝑟1 − 7𝑟0

𝑟2 = 3𝑟 − 7

𝑟2 − 3𝑟 + 7 = 0

Solving Linear Homogeneous Recurrence Relations
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Completing the Solution

• Each characteristic root yields a value for 𝑟 in the term 𝑟𝑛. 

• We can then create a linear combination of the terms and use the 
initial conditions to find leading coefficients of the 𝑟𝑛 terms
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Example

• What is the solution to the following recurrence relation:

𝑎0 = 2
𝑎1 = 3

𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2

The characteristic equation is:

𝑟𝑛 = 𝑟𝑛−1 + 2𝑟𝑛−2

𝑟2 = 𝑟 + 2

𝑟2 − 𝑟 − 2 = 0
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Example

• The characteristic equation can be factored and solved

• Quadratic formula for 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

𝑟2 − 𝑟 − 2 = 0

𝑟 − 2 (𝑟 + 1) = 0

𝑟 = −1, 2
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

• There are two solutions:

𝑎𝑛 = −1 𝑛               𝑎𝑛 = 2𝑛

• Linear combinations of the two solutions are also solutions

𝑟 = −1, 2
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

𝑟 = −1, 2

𝑎𝑛 = 𝑠 ⋅ 𝑟𝑛 + 𝑡 ⋅ 𝑟𝑛

𝑎𝑛 = 𝑠 ⋅ −1 𝑛 +  𝑡 ⋅ (2)𝑛

𝑎0 = 2 = 𝑠 ⋅ −1 0 +  𝑡 ⋅ (2)0

= 𝑠 +  𝑡

𝑎1 = 3 = 𝑠 ⋅ −1 1 +  𝑡 ⋅ (2)1

= −𝑠 + 2 𝑡
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

𝑟 = −1, 2

𝑎𝑛 = 𝑠 ⋅ 𝑟𝑛 + 𝑡 ⋅ 𝑟𝑛

𝑎𝑛 = 𝑠 ⋅ −1 𝑛 +  𝑡 ⋅ (2)𝑛

𝑎0 = 2 = 𝑠 ⋅ −1 0 +  𝑡 ⋅ (2)0

= 𝑠 +  𝑡

𝑎1 = 3 = 𝑠 ⋅ −1 1 +  𝑡 ⋅ (2)1

= −𝑠 + 2 𝑡

Use the initial cases to solve for 𝑠 and 𝑡

𝑎0 = 2
𝑎1 = 3
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

𝑟 = −1, 2

𝑎𝑛 = 𝑠 ⋅ 𝑟𝑛 + 𝑡 ⋅ 𝑟𝑛

𝑎𝑛 = 𝑠 ⋅ −1 𝑛 +  𝑡 ⋅ (2)𝑛

𝑎0 = 2 = 𝑠 ⋅ −1 0 +  𝑡 ⋅ (2)0

= 𝑠 +  𝑡

𝑎1 = 3 = 𝑠 ⋅ −1 1 +  𝑡 ⋅ (2)1

= −𝑠 + 2 𝑡
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

𝑟 = −1, 2

𝑎𝑛 = 𝑠 ⋅ 𝑟𝑛 + 𝑡 ⋅ 𝑟𝑛

𝑎𝑛 = 𝑠 ⋅ −1 𝑛 +  𝑡 ⋅ (2)𝑛

𝑎0 = 2 = 𝑠 ⋅ −1 0 +  𝑡 ⋅ (2)0

= 𝑠 +  𝑡

𝑎1 = 3 = 𝑠 ⋅ −1 1 +  𝑡 ⋅ (2)1

= −𝑠 + 2 𝑡
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

𝑟 = −1, 2

𝑎𝑛 = 𝑠 ⋅ 𝑟𝑛 + 𝑡 ⋅ 𝑟𝑛

𝑎𝑛 = 𝑠 ⋅ −1 𝑛 +  𝑡 ⋅ (2)𝑛

𝑎0 = 2 = 𝑠 ⋅ −1 0 +  𝑡 ⋅ (2)0

= 𝑠 +  𝑡

𝑎1 = 3 = 𝑠 ⋅ −1 1 +  𝑡 ⋅ (2)1

= −𝑠 + 2 𝑡
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

𝑟 = −1, 2

𝑎𝑛 = 𝑠 ⋅ 𝑟𝑛 + 𝑡 ⋅ 𝑟𝑛

𝑎𝑛 = 𝑠 ⋅ −1 𝑛 +  𝑡 ⋅ (2)𝑛

𝑎0 = 2 = 𝑠 ⋅ −1 0 +  𝑡 ⋅ (2)0

= 𝑠 +  𝑡

𝑎1 = 3 = 𝑠 ⋅ −1 1 +  𝑡 ⋅ (2)1

= −𝑠 + 2 𝑡
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

2 = 𝑠 +  𝑡

3 = −𝑠 + 2 𝑡

𝑠 = 1/3

𝑡 = 5/3

𝑎𝑛 = 1/3 −1 𝑛 + 5/3 2 𝑛
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Example

• Use the initial conditions to solve for the coefficients of the linear 
combination of 𝑟𝑛:

2 = 𝑠 +  𝑡

3 = −𝑠 + 2 𝑡

𝑠 = 1/3

𝑡 = 5/3

𝑎𝑛 = 1/3 −1 𝑛 + 5/3 2 𝑛
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Example

• Substitute the values for 𝑠 and 𝑡 into the equation for 𝑎𝑛

𝑎𝑛 = 1/3 ⋅ −1 𝑛 +  5/3 ⋅ (2)𝑛
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Example

• Check the solution

𝑛

𝑎𝑛 =
1

3
⋅ −1 𝑛 +

5

3
⋅ (2)𝑛

0 2
1

3
⋅ −1 0 +

5

3
⋅ 2 0 = 2

1 3
1

3
⋅ −1 1 +

5

3
⋅ 2 1 = 3

2 3 + 2 ⋅ 2 = 7
1

3
⋅ −1 2 +

5

3
⋅ 2 2 = 7

3 7 + 2 ⋅ 3 = 13
1

3
⋅ −1 3 +

5

3
⋅ 2 3 = 13

4 13 + 2 ⋅ 7 = 27
1

3
⋅ −1 4 +

5

3
⋅ 2 4 = 27

5 27 + 2 ⋅ 13 = 53
1

3
⋅ −1 5 +

5

3
⋅ 2 5 = 53

𝑎0= 2
𝑎1= 3
𝑎𝑛= 𝑎𝑛−1 + 2𝑎𝑛−2
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Example Summary

1. Start with a recurrence relation with initial conditions:

𝑎0 = 2

𝑎1 = 3

𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2

2. Assume a solution starting from:

𝑎𝑛 = 𝑟𝑛

3. Derive the characteristic equation from the recurrence relation:

𝑟2 − 𝑟 − 2 = 0

4. Solve the equation:

𝑟 = −1, 2

There will be as many roots as the degree of the recurrence relation
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Example Summary

5. Express the solution as a linear combination of the original assumption 𝑎𝑛 = 𝑟𝑛 :

𝑎𝑛 = 𝑠 ⋅ 𝑟𝑛 + 𝑡 ⋅ 𝑟𝑛

𝑎𝑛 = 𝑠 ⋅ −1 𝑛 + 𝑡 ⋅ 2 𝑛

6. Apply the initial conditions to get simultaneous equations

𝑎0 = 2 = 𝑠 ⋅ −1 0 + 𝑡 ⋅ 2 0

𝑎1 = 3 = 𝑠 ⋅ −1 1 + 𝑡 ⋅ 2 1

7. Solve the simultaneous equations to get the coefficients 𝑠 and 𝑡

𝑠 = 1/3     𝑡 = 5/3

8. Substitute to get the final solution

𝑎𝑛 = 1/3 ⋅ −1 𝑛 + 5/3 ⋅ 2 𝑛
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Solving When a Root is Repeated

• If a root, 𝑟, appears twice as a solution to a polynomial, then both 𝑟𝑛 
and 𝑛𝑟𝑛 are solutions to the recurrence relation

• For each additional occurrence of a root include an additional factor 
of 𝑛: 𝑟𝑛, 𝑛𝑟𝑛, 𝑛2𝑟𝑛, 𝑛3𝑟𝑛 …

• Example: What is the solution to the recurrence relation:

𝑓0 = 2

𝑓1 = 3

𝑓𝑛 = 4𝑓𝑛−1 − 4𝑓𝑛−2
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Solving When a Root is Repeated

• If a root, 𝑟, appears twice as a solution to a polynomial, then both 𝑟𝑛 
and 𝑛𝑟𝑛 are solutions to the recurrence relation

• For each additional occurrence of a root include an additional factor 
of 𝑛: 𝑟𝑛, 𝑛𝑟𝑛, 𝑛2𝑟𝑛, 𝑛3𝑟𝑛 …

• Example: What is the solution to the recurrence relation:

𝑟𝑛 = 4𝑟𝑛−1 − 4𝑟𝑛−2

𝑟𝑛 − 4𝑟𝑛−1 + 4𝑟𝑛−2 = 0

𝑟2 − 4𝑟1 + 4 = 0

(𝑟 − 2)(𝑟 − 2) = 0

𝑟 = 2, 2
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Solving When a Root is Repeated

• If a root, 𝑟, appears twice as a solution to a polynomial, then both 𝑟𝑛 
and 𝑛𝑟𝑛 are solutions to the recurrence relation

• For each additional occurrence of a root include an additional factor 
of 𝑛: 𝑟𝑛, 𝑛𝑟𝑛, 𝑛2𝑟𝑛, 𝑛3𝑟𝑛 …

• Example: What is the solution to the recurrence relation:

𝑓𝑛 = 𝑠(2)𝑛+𝑡𝑛(2)𝑛

𝑓0 = 2 = 𝑠(2)0+𝑡(0)(2)0

2 = 𝑠

𝑓1 = 3 = 𝑠(2)1+𝑡(1)(2)1

3 = 4 + 2𝑡

−1/2 = 𝑡
𝑓𝑛 = 2 ⋅ 2𝑛 − (1/2)𝑛2𝑛
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Solving When a Root is Repeated

• If a root, 𝑟, appears twice as a solution to a polynomial, then both 𝑟𝑛 
and 𝑛𝑟𝑛 are solutions to the recurrence relation

• Another example: What is the solution to the recurrence relation 
with the following characteristic equation:

𝑟 − 2 3 (𝑟 − 3)2 = 0

𝑟 = 2, 2, 2, 3, 3

𝑎𝑛 = 𝑠2𝑛 + 𝑡𝑛2𝑛 + 𝑢𝑛22𝑛 + 𝑣3𝑛 + 𝑤𝑛3𝑛

Use the initial conditions to solve for 𝑠, 𝑡, 𝑢, 𝑣, 𝑤
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