
Application
Programming

Hend Alkittawi

OOP Concepts
Introduction to Java Interfaces

INTERFACES
- Java interfaces are particularly useful for assigning common

functionality to possibly unrelated classes

- Java interfaces offer a capability requiring that unrelated classes

implement a set of common methods

- A Java interface describes a set of methods that can be called on an

object to tell it to perform some tasks or return some piece of

information

- An interface should be used in place of an abstract class when there is

no default implementation to inherit, that is, no fields and no

concrete methods implementations

- this allows objects of unrelated classes to be processed polymorphically

INTERFACES

- An interface declaration begins with the keywords interface

and contains only constants and abstract methods

- all methods declared in an interface are implicitly public

abstract methods

- all fields are implicitly public, static, and final

public interface InterfaceName {

 public static final dataType varName;

 public abstract returnType interfaceMethod();

}

INTERFACES

- To use an interface, a concrete class must specify that it

implements the interface and must declare each method in the

interface with the signature specified in the interface

declaration

- Java does not allow subclasses to inherit from more than one

superclass, but it allows a class to inherit from one

superclass and implement as many interfaces as it needs

public class ClassName implements InterfaceName
or
 public class ClassName extends SuperClass implements InterfaceName

where InterfaceName maybe a comma-separated list of interface names

public interface Drawable {
 public void draw();
}

public class Tree implements Drawable {
 private String type;
 private double height;

 public Tree(String type, double height) {
 this.type = type;
 this.height = height; }

 // getters and setters are omitted

 @Override
 public void draw() {
 System.out.println("Drawing a tree with height " + getHeight() + " meters"); }
}

public class Rectangle implements Drawable{
 private double length;
 private double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width; }

 // getters and setters are omitted

 public void draw() {
 System.out.println("Drawing a rectangle with length " + length + " and width " + width); }
}

public class InterfaceDemo {

 public static void main(String[] args) {

 // Creating objects of different
 // classes that implement Drawable
 Drawable rectangle = new Rectangle(2.5, 7.2);
 Drawable tree = new Tree("Oak", 5.5);
 Drawable person = new Person("John", 30);

 // Array of Drawable objects
 Drawable[] drawables = {rectangle, tree, person};

 // Drawing all drawable objects
 for (Drawable drawable : drawables) {
 drawable.draw();
 }
 }
}

CODE DEMO

- Create classes to demo
interfaces concepts!

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

