g Application §
S Programming (

e
%\\\\ Hend Alkittawi aamas
O

AN\

R — G-
Exception Handling

Introduction To Java Errors And

S——

Q
INTRODUCTION

\

- In Java when things go wrong a java.lang.Exception object is
created.
- For example,
- 1if we add elements to an uninitialized arraylist
- NullPointerException
- 1if we try to read from a file that doesn’t exist
- FileNotFoundException
- 1if we try to read past the end of the file
- IOException
- if the file changes while we are reading it

- IOException

Q
THE CALL STACK

\

When a Java program runs, execution begins in the main()

method. The main() method creates objects and invokes methods

on them.

When execution moves to another method an entry is added to

the call stack.
call stack
When a method finishes executing, the entry

is removed from the call stack, and execution

returns to the next line in the main() method b3 .method ()

- this continues until the main method finishes

main ()

Q
THE CALL STACK

\

The call stack entry below, among other things, contains
- the current method

- where the call occurred in that method

NullPointerException:
at Student.getAverage (Student.java:79)
at Student.toString(Student.java:62)
at java.lang.String.valueOf (String.java:2615)
at java.io.PrintStream.print (PrintStream.java:616)
at java.io.PrintStream.println (PrintStream.java:753)
at Student.main (Student.java:120)
at sun.reflect.NativeMethodAccessorImpl.invokeO (Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke (NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke (DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke (Method.java:585)

|
O
\
\
\

\

EXCEPTIONS IN JAVA

~\

In Java, all exception classes inherit from the Exception class

Exceptions in Java are checked or unchecked!
Checked exceptions must be caught or thrown. Examples of
checked exceptions include:

- IOException

- FileNotFoundException

Unchecked exceptions should never be caught or thrown. Examples
of unchecked exceptions include:

- NullPointerException

- ArrayIndexOutOfBoundsException

https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html

EXCEPTIONS IN JAVA

Object

——

Throwable

?

Error

Exception

OutOfMemoryError

| StackOverflowError |

RuntimeException

?

[

il

IOException

1

LinkageError lllegalArgumentException IndexOutOfBoundsException FileNotFoundException
| — i ——

NumberFormatException

‘ ArithmeticException |

ArraylndexOutOfBoundsException I

SocketException
-

|
O
\
\
\

\

EXCEPTION HANDLING

As developers, we must address any problems that might occur.
For unchecked exceptions, your code should follow best
practices in order to prevent exceptions occurrences. For
example

- check for array bounds

- check for null values

For checked exceptions, your code either throws the exception

or handles the exception with a try/catch block.

EXCEPTION HANDLING

|
O
\
\
\

\

Using try, catch, and finally blocks

- Wrap all code that can cause a checked exception in try,

(and optionally finally) blocks

try {
System.out.println(“code here can cause
an exception");
} catch (Exception e) {

System.out.println("handle exception here");
} finally { // optional

System.out.println(“code that must be absolutely
executed after try block completes");

try {
System.out.println("reading from a file ..");
} catch (FileNotFoundException e) {
System.out.println("handle exception here");
} finally { // optional

System.out.println(“closing the file ..");

catch

EXCEPTION HANDLING

A try block can have multiple catch blocks.

The order of the catch blocks is important.

try {
System.out.println("reading from a file ..");
} catch (FileNotFoundException e) {

System.out.println(“code here will execute
when a FileNotFoundException is thrown!");

} catch (IOException e) {
System.out.println("handle exception here");
} finally {

System.out.println(“closing the file ..");

try {
System.out.println("reading from a file ..");
} catch (IOException e) {

System.out.println("code here will execute
when a FileNotFoundException is thrown!");

} catch (FileNotFoundException e) {

System.out.println("code here will not execute
when a FileNotFoundException is thrown!");

} finally {

System.out.println("closing the file ..");

Q
THROWING EXCEPTIONS \

\

- An exception might be thrown, when there is nothing more you

can do about it!

public void methodA() {
try {
dangerZone();
} catch (Exception e) {
e.printStackTrace();
}
}

public void dangerZone() throws Exception {
throw new Exception();

}

EXCEPTION HANDLING EXAMPLE

import java.io.FileNotFoundException;
public class DemoExceptions {

public static void main(String[] args) {

try {
method(true);
System.out.println("returned from method()");

} catch (FileNotFoundException e) {
System.out.println("caught the exception, will handle it!");
e.printStackTrace();

} finally {
// code that must be absolutely executed after try block completes
System.out.println("finally will cleanup!");

}

public static void method(boolean exception) throws FileNotFoundException {
if(exception)
throw new FileNotFoundException();
System.out.println("method 1 executed successfully!");

HANDLING EXCEPTIONS

Handling exceptions improves the user experience!
Consider

- Where can errors happen caused by our logic?

- Where can exceptions happen?

- Where can user error occur?
For each, how can we prevent or reduce these?

- What would the user expect?

USER EXPERIENCE!

|
O
\
\
\

\

Suppose you are -
exploring with Google
earth (desktop app),
you click a button and
it
- Closes and/or
reopens the
program/window
- Changes the size of
the window
- Moves GUI

components around

the view

- Does nothing!

Suppose you are
searching Google (web
app), you enter some
text, click the button
and
- The web page
refreshes, losing
your search text
- The result page
comes up, without
results

- Nothing happens!

Suppose you are
shopping on Amazon
(mobile app), you tap
a button and
- The app closes (and
maybe reopens)
- The entire style of
the app changes
- GUI components move
around the view
(unexpectedly)
- Nothing happens!

CODE DEMO

- Demo exception handling concepts
in Eclipse!

o —— -

74
A\
--@----

- = = -

DO YOU HAVE ANY
QUESTIONS?

a hend.alkittawi@utsa.edu
By Appointment
a Online

