Section 8.7/
Loop Invariants

Interpreting Predicate Logic Statements

* Consider the following statement in predicate logic where the domain
of discourse is the natural numbers:

x=y)vix+1=y)

e What is needed in order to determine the truth value of the
statement?

 We need the values of each variable that occurs in the statement

Environment Functions

* In order to know the values of variables, we use a function that takes
variable names and returns values in our domain of discourse, the
natural numbers, N. If V is the set of variables, then the function

n:V-N

So if n(x) = 3, then the variable x has the value 3

Such functions that map variables to values in the domain of
discourse are called environments

Interpreting(x =y)V(x+1=y)

* In order to interpret (x = y) V (x + 1 = y), we need an environment
e Suppose that

*n(x) =3

‘ny) =4
* Thenthe (x = y) V (x + 1 = y) when evaluated with 1 is true

Interpreting(x =y)V(x+1=y)

* However, if

*12(x) =3
"2 () =0
* Thenthe (x = y) V (x + 1 = y) when evaluated with 1n,is false

Program State

* A similar concept applies to computer programs

* When we hand trace a program, we write down the values of
variables that are in computer memory

X 1 X y
y 1= 9
x =y * 10

Program State

* A similar concept applies to computer programs

* When we hand trace a program, we write down the values of
variables that are in computer memory

X 1 X y
y =9 1
x =y * 10

Program State

* A similar concept applies to computer programs

* When we hand trace a program, we write down the values of
variables that are in computer memory

X 1 X y
y 1= 9 1 5
x =y * 10

Program State

* A similar concept applies to computer programs

* When we hand trace a program, we write down the values of
variables that are in computer memory

X 1 X y

y 1= 9 1 | 5
— *

X % 10 50

Program State and Environments

* The computer memory used by a program is referred to as the
program's state.

* The environment function n and the computer memory symbolized
by the table created when we create a hand-trace fill the same role:
they store variable values

Programs as State Transformers

* We can think of a program or a program fragment as
something that transforms its state

* v |
X 1=V 10 transforms into
1 | 5 50 | S
The program state before The program state after

executingx := y * 10 executingx := vy * 10

Programs as State Transformers

* Since environment functions and program state serve the
same role, we can also think of a program or even a single
program statement as transforming one environment into
another

x =y * 10 transforms N1 into 1y,

nx) =1 n2(x) = 50
n(y) =5 n2(y) =5

Program Verification

* Let p and g be statements in predicate logic and let S be a program,
then § is partially correct with respect to pre-condition p and post-
condition g when:

For any environment 14 in which p is true:

If S transforms n; ton, then q is trueinn,

p{S}q denotes that S is partially correct with respect to p and g

p{S}q is called a partial correctness assertion

Program Verification

* Note that p{S}q does not require S to terminate when started with
n.. It only requires that if S does terminate when started with a n4
that makes p true, then the resulting 1, makes g true

Program Verification

* Example:
x=1{x = x+1l}x =2

is a true partial correctness assertion

Program Verification

* Example:
y=3{x = 2*y}lx =6

is a true partial correctness assertion

Building Programs

 Every assignment statement is a program.

* Larger programs can be built from smaller programs in 3 ways

Building Programs

1. Sequencing: If §; and S, are programs, then §; S, is a program

Example: Sincex := 0 andy := 1 areeach programs, then

IS @ program

Building Programs

2. Conditional Statements: If S is a program and condition is a
program test, then

1f condition then
S
end-1f

IS @ program

Building Programs

2. Conditional Statements example:

1f x > 0 then
X 1= x+1
end-1f

IS @ program

Building Programs

3. While loop: If S is a program and condition is a program test, then

while condition
S
end-while

IS @ program

Building Programs

3. While Loop example:

while x > 0
y =y + X
X = x — 1

end-while

IS @ program

Rules of Inference

* For each type of program, there is a rule that guides us in creating
partial correctness assertions from simpler partial correctness
assertions

Rules of Inference

1. Sequencing

p{S1}q q{S;}r
p{S1 Sair

If p {S1} g and q {S,} r are true partial correctness assertions, then
p {S1 S,} 7 is atrue partial correctness assertion

Rules of Inference

1. Sequencing example:

y=2{x = ytl}x=3 x=3{y = xt1l}y=4

y=2{x = y+1 y = x+1}y =4

Rules of Inference

2. Conditional Statement

p A condition {S1} q (p A =condition) — q

p {1if condition then §; end-if}q

Rules of Inference

2. Conditional Statement

p A condition {S1} q (p A =condition) — q

p {1if condition then §; end-if}q

If p A condition {S1} q is a true partial correctness assertions and
(p A =condition) — q is a true in all environments n, thenp {1 f
condition then S;} q is a true partial correctness assertion

Rules of Inference

2. Conditional Statement example

Truenx <0 {x = -x} x>0 (TrueA—x<0)->x=>0

True{if x < 0Othen x = -x end-1f}x =0

Rules of Inference

2. Conditional Statement with Else

p A condition {S;}q (p A =condition) {S,} g

p {if condition then §; else S, end-if}q

Rules of Inference

2. Conditional Statement with Else

p A condition {S;} q (p A =condition) {S,} q
p {if condition then §; else S, end-if}q

If p A condition {S;} g and (p A =condition) {S,} q are true
partial correctness assertions, then

p {if condition then §; else S, end-1if}q is atrue partial
correctness assertion

Rules of Inference

3. While Loop

p A condition {S1}p

p {while condition S; end-while} (—condition A p)

p is called a loop invariant

Rules of Inference

3. While Loop

p A condition {S1}p

p {while condition S; end-while} (—condition A p)

If p A condition {S,} p is a true partial correctness assertions, then p {while
condition S; end-while} (—condition A p)is a true partial correctness
assertion

Rules of Inference

3. While loop example

X+y=zA-x=0 {x=x-1; y=y+1} x+y=2Z2

x+y=2z{while (qx=0) x:=x-1 y:=y+1 end-while} (= x=0Ax+y=2) ‘

Rules of Inference

3. While loop example

X+y=zA-x=0 {x=x-1; y=y+1} x+y=2Z2

x+y=2z{while (qx=0) x:=x-1 y:=y+1 end-while} (= x=0Ax+y=2) ‘

What happens if initially x < 07?

Loop Invariants

* A first attempt at creating a loop invariant

 Start with a hand trace and examine how the variables change

end-while

. X Y

while ax=0 3 A
X 1= x-1

A 2 1

' 1 2

0 3

* In general, x+vy is a constant, i.e. x+y=c

Loop Invariants

* Another example

x = 0;
1 := 0y |
whilei < a = -
X 1= X + m 0 2
1= 1+ 1 m 1
end-while m-+m 2
m+m+m 3
* In general, x = im :

Loop Invariants and Mathematical Induction

* Prove Vn P(n) by mathematical induction on the natural numbers
where P(n) is

After n iterations of the loop, x = im

1. Basecase:n =10 X 1= 8;
After O iterations, x = 0andi = 0, hence x = im vlvhile i, < 5
X = X + m
1 := 1 + 1
end-while

Loop Invariants and Mathematical Induction

2. Induction step:

Let x;, and i;, denote the values of program variables x and i after k iterations

X = 0;

1 := 0;

while1l < a
X = X + m
1 := 1 + 1

end-while

Loop Invariants and Mathematical Induction

2. Induction step:

Let x;, and i;, denote the values of program variables x and i after k iterations

1. Assume after k iterations, x;, = im

X = 0;

1 := 0;

while1l < a
X = X + m
1 := 1 + 1

end-while

Loop Invariants and Mathematical Induction

2. Induction step:

Let x;, and i;, denote the values of program variables x and i after k iterations

1. Assume after k iterations, x;, = im

2. After the k + 1stiteration, x,,1 = x;, + m and

ge1 =g + 1 x 1= 0y

1 := 0;

while1l < a
X = X + m
1 := 1 + 1

end-while

2.

Loop Invariants and Mathematical Induction

Induction step:

Let x;, and i;, denote the values of program variables x and i after k iterations

1.
2.

Assume after k iterations, x;, = i;;m

After the k + 1%titeration, x,,1 = x;, + m and

CXgpr =X +Tm=igm+m=(+1)m=i, m

X = 0;

1 := 0;

while1l < a
X = X + m
1 := 1 + 1

end-while

2.

Loop Invariants and Mathematical Induction

Induction step:

Let x;, and i;, denote the values of program variables x and i after k iterations

1.
2.

Assume after k iterations, x;, = i;;m

After the k + 1%titeration, x,,1 = x;, + m and
py1 =1+ 1

Xpe1 =X +m=iym+m= (i + D)m =i, 4m
After k + 1 iterations xj 41 = [41mMm

X = 0;

1 := 0;

while1l < a
X = X + m
1 := 1 + 1

end-while

	Slide 1: Section 8.7 Loop Invariants
	Slide 2: Interpreting Predicate Logic Statements
	Slide 3: Environment Functions
	Slide 4: Interpreting open paren x equals y , close paren logical or open paren x plus 1 equals y , close paren
	Slide 5: Interpreting open paren x equals y , close paren logical or open paren x plus 1 equals y , close paren
	Slide 6: Program State
	Slide 7: Program State
	Slide 8: Program State
	Slide 9: Program State
	Slide 10: Program State and Environments
	Slide 11: Programs as State Transformers
	Slide 12: Programs as State Transformers
	Slide 13: Program Verification
	Slide 14: Program Verification
	Slide 15: Program Verification
	Slide 16: Program Verification
	Slide 17: Building Programs
	Slide 18: Building Programs
	Slide 19: Building Programs
	Slide 20: Building Programs
	Slide 21: Building Programs
	Slide 22: Building Programs
	Slide 23: Rules of Inference
	Slide 24: Rules of Inference
	Slide 25: Rules of Inference
	Slide 26: Rules of Inference
	Slide 27: Rules of Inference
	Slide 28: Rules of Inference
	Slide 29: Rules of Inference
	Slide 30: Rules of Inference
	Slide 31: Rules of Inference
	Slide 32: Rules of Inference
	Slide 33: Rules of Inference
	Slide 34: Rules of Inference
	Slide 35: Loop Invariants
	Slide 36: Loop Invariants
	Slide 37: Loop Invariants and Mathematical Induction
	Slide 38: Loop Invariants and Mathematical Induction
	Slide 39: Loop Invariants and Mathematical Induction
	Slide 40: Loop Invariants and Mathematical Induction
	Slide 41: Loop Invariants and Mathematical Induction
	Slide 42: Loop Invariants and Mathematical Induction

