©)

Time Complexity Space Complexity

CS 2124: Data Structures
Spring 2024

Lecture 2 (Part — II)
Topics: Time and Space Complexity, Runtimes, Sorting, Searching

Topics

* Big O (Revision)

e Sorting Algorithms
e Stable vs Unstable Sorting
* In-place and Out-of-place Sorting

e Bubble Sort

e Selection Sort
e Bubble sort vs Selection sort

* Insertion Sort
* |nsertion Sort vs Bubble sort vs Selection sort

* Merge Sort

* Quick Sort
* Median as pivot

* Summary

Big O notation

when analyzing some algorithm, one might find that the time (or the number of steps) it takes to complete a
problem of size n is given by T(n) =4 n?-2 n + 2.

If we ignore constants (which makes sense because those depend on the particular hardware the program is run
on) and slower growing terms, we could say "T(n) grows at the order of n?" and write: T(n) = O(n?).

Performance: how much time/memory/disk/... is actually used when a program is run. This depends on the
machine, compiler, etc. as well as the code.

Complexity: how do the resource requirements of a program or algorithm scale, i.e., what happens as the size of
the problem being solved gets larger?

Complexity affects performance but not the other way around.

Big O notation

* Sequence of statements:
e Statement 1; statement 2; ... statement k;

* The total time is found by adding the times for all statements:
* total time = time(statement 1) + time(statement 2) + ... + time(statement k)

* If each statement is "simple" (only involves basic operations) then the time for each statement is constant and the total
time is also constant: O(1).
* If-Then-Else
* jf (cond)
* then
* block 1 (sequence of statements)

> else @(N)

* block 2 (sequence of statements) -straightforward
> -tells it like it 1s
e end if;

-increases when
* Here, either block 1 will execute, or block 2 will execute. input increases

* Therefore, the worst-case time is the slower of the two possibilities: max(time(block 1), time(block 2)) If block 1 takes O(1)
and block 2 takes O(N), the if-then-else statement would be O(N).

Big O notation

Loops:
e forlin1.. N loop
e sequence of statements
e end loop;
The loop executes N times, so the sequence of statements also executes N times. If we assume the statements are O(1), the
total time for the for loop is N * O(1), which is O(N) overall.
Nested loops:
* forlin1..N loop
* forJin1.. M loop
* sequence of statements
e end loop;
e end loop;

The outer loop executes N times. Every time the outer loop executes, the inner loop executes M times.
As a result, the statements in the inner loop execute a total of N * M times. Thus, the complexity is O(N * M).

In a common special case where the stopping condition of the inner loop is instead of (i.e., the inner loop also executes N
times), the total complexity for the two loops is

Big O notation

 Algorithms with running time O(2”N) i.e. O(2™) are often recursive algorithms that solve a
problem of size N by recursively solving two smaller problems of size N-1.

* For instance to solve the famous "Towers of Hanoi" problem for N disks

Big O notation

The binary search algorithm accomplishes its task by dividing the search area in half on each iteration.
So at the start we have N elements to search.

By the second step we only have N/2 elements to search, and by the third we only have N/4 elements to search.
 N=8,[4, 8, 10, 14, 27, 31, 46, 52] //Compared and divide search area by 2
« N=4,[27, 31, 46, 52] //Compared and divide search area by 2
« N=2,[46,52] //Compared mid to target. They matched, so returned mid.

Notice that this took three steps and it's dividing by 2 each time.

If we multiplied by 2 each time we would have 2 x2x2 =8, or 23 = 8.
* 23=8->log,8=3
« 2k=N->log, N =k

Therefore, the Big O complexity of a binary search is O(log N).

Sorting Algorithms

Sorting refers to arranging data in a particular format.

Sorting algorithm specifies the way to arrange data in a particular order.

The importance of sorting lies in the fact that data searching can be optimized to a very high level, if data is
stored in a sorted manner.

Sorting is also used to represent data in more readable formats.

In general there are 2 approaches to sort an array of elements:

1. Some algorithms work by moving elements to their final position, one at a time. You sort an array of size N, put 1
item in place, and continue sorting an array of size N — 1.

2. Some algorithms put items into a temporary position, close(r) to their final position. You rescan, moving items closer
to the final position with each iteration.

Sorting Algorith MS (Complexity And Running Time)

* Factors:
1. Algorithmic complexity
2. Additional space requirements
3. Use of recursion
4. Worst-case behavior
. Worst-case behavior is important for real-time systems that need guaranteed performance.

5. Behavior on already-sorted or nearly-sorted data

Stable vs Unstable Sorting

Stable
3‘! A E" v | % ¥ | E! &
* A stable sort is one which preserves the original order of the KN , .
input set, where the [unstable] algorithm does not distinguish g v/ 4 a4 | a4 & & v
between two or more items. L l] E’/ S
2 5 5 7
v Vv vy ¥ ad b ad b
v - !I!'!
' h A A AAM v VY v oV
s 1z | 311 el 51 2] 113 | —» Unsorted List 5 | & | : y
Not stable
. i < .-
ad & vY ¥ v ¥ ad b
— . | ' v .
12 |2 |l2]3" |5 |5 6 | 3 |— Stable i
v 9 h Ah A A v VY
v |20 vy s
L1233 #2112 °|? |—> Unstable . v | a*
F Y v vy A Ah v vy

In-place and Out-of-place Sorting

* An In-place algorithm modifies the inputs, which can be a list or an array,
As the algorithm runs, the input is usually overwritten by the output, so no additional space is required.

* However, the in-place sorting algorithms may take some memory, like using some variables, etc. for its
operation.

* Overall, it takes constant memory for its operation. Since they take constant space, the space complexity of
these algorithms is O(1)

* An algorithm that is not in place is called a not-in-place or out-of-place algorithm. These sorting algorithm uses
for sorting, which depends upon the size of the input.

* The standard merge sort algorithm is an example of the out-of-place algorithm as it requires O(n) extra
space for merging.

Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards
a particular value or infinity.

Big O notation

Cost Times . .
_ —_— int main()
1=1; cl 1
sum = 0; c2 1 int i=1, sum=8,n
while (i <= n) { c3 n+1 { (1 <= n)
J1=1; cd n (3 n)
while (] <= n) { c5 n* (n+l)
sum = sum + i; cé n*n R
1 =3 + 1; cT n*n I=I
}
1 =1 +1; c8 n

Total Cost = ¢l +c¢2 +(n+1)*c3 + n*cd + n*(n+1)*c5+n*n*c6bn*n*c7+n*c8

Try to find the Big O representation of the algorithm and the out put of the program

Bubble Sort

* Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they
are in the wrong order.

* This algorithm is not suitable for large data sets as its average and worst-case time complexity is quite high.
* Steps:

* Walks through the array n-times.

* As it walks up the array it checks if the current element and it's neighbor are out of order

* If they are not, it swaps them so the larger element is right
* Bubble sort is an In-place and stable sorting algorithm

© N O Uk WD PRE

Bubble Sort

begin BubbleSort(list)
for all elements of list
if list[i] > list[i+1]
swap(list[i], list[i+1])
end if
end for
return list

end BubbleSort

The worst-case occurs when we want to sort a list in
ascending order, but it is arranged in descending order.

First pass Second pass Third pass

7 6 4 3 6 4 3 7 4 3 6 7
A\ 4 \ & 4 \ 4

swap swap swap
6| 7|43 4 | 61317 3 14|16 |7
6 14| 7|3 4 13|67

swap

6 | 4|3 |7

Bubble Sort

int main() {
int af], n, i, d, swap;
("Enter number of elements in the array:
(” ”J n);
("Enter integers\n", n);
(i ;1< nj 1i+4) Values are passed to the function
("%d", &a[i]); a = Array containing the elements/user input

bubblEESDr‘F(af n);h ; n= Total number of elements
"Printing the sorted array:
(i =0; i < n; i++)

- ", a[i]);

m

-
>

Bubble Sort

bubble sort(a, n);

void bubble sort(int a[], int n) {
int 1 > J , tmp;

(1 3 1 <njy i) {
(] 3 J <n -1
(a[3] > a[3
tmp = a[J];

a[j] E « if list[i] > list[i+1]
» swap(list[i], list[i+1]) //Using a temporary variable ‘tmp’

Bubble Sort

void bubble_sort(int a[], int n) {
int i s] » tmp;
(i=0;1i<n; it+) {
;3 J<n -1
(a[j]1 > a[j

(3

tmp a[jl;
a[3] = a[3
alJ]

Bubble Sort (Complete Code)

L I

void bubble_sort(int a[], int n) {

S int i > J , tmp;

4 (1 3 1< ny i++) { Loop n times - 1 per element

5 (3 ; J<n-1 ; J++) { // Last 1 elements are sorted alread

6 (a[3]1 > a[3] 1) { // swop if order 1is broken

7 tmp = a[3]; .
8 a[j] = a[j 1; Can the code be optimized ?
9 a[j] = tmp;

10 }

11 }

12 }

3}

14 - int main() {

15 int a[], n, i, d, swap;

16 ("Enter number of elements in the array:\n");

17 ("%d", &n);

18 ("Enter integers\n", n);

19 (1 31 < np i+4)

20 ("%d", &a[i]);

21 bubble_sort(a, n);

22 ("Printing the sorted array:\n");
23 (1 3 1< n; i)
- (” HJ a[l]);

[
»

| LU |
o un J

—

Selection Sort

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place comparison-based algorithm in
which the list is divided into two parts:

1. The Sorted Part At The Left End
2. The Unsorted Part At The Right End.

Initially, the sorted part is empty and the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost element, and that

element becomes a part of the sorted array. This process continues moving unsorted array boundary by one
element to the right.

This algorithm is not suitable for large data sets as its average and worst case complexities are of 0(n?), where
n is the number of items.

Selection Sort Visual representation on next slide >>

Selection Sort

L

514

2

ﬁ min glement

He

7

ﬂ min element

4 5

7

ﬁ min element

STEP 1. 7
STEP 2. 2
STEP 3. 2
STEP 4. 2

7

— >

— =

Sorted Array

 ———

— -

ﬁ min element

Try code implementation yourself

2

5

4

7

Sorted Array

Unsorted Array

2

4

5

7

Unsorted Array

2

4 15

7

Sorted Array

Unsorted Array

4 5

Sorted Array

Step 1 - Set MIN to location O

Step 2 - Search the minimum element in the list
Step 3 - Swap with value at location MIN

Step 4 - Increment MIN to point to next element
Step 5 - Repeat until list is sorted

Bubble sort vs Selection sort

Bubble Sort Selection Sort
Simple Sorting Algorithm Simple Sorting Algorithm
Compares neighboring Takes the smallest element and
elements moves it into its place
Swap based sorting In-place sorting

e Which one is fast and efficient ?

Insertion Sort

* Insertion sort is a simple sorting algorithm that
works similar to the way you sort playing cards
in your hands.

* The array is virtually split into a sorted and an
unsorted part.

* Values from the unsorted part are picked and
placed at the correct position in the sorted part.

~J

=

LN

7

afsf2| =4
here checking on
left side of 4
715 2| = |4
ﬂ here checking on
left side of 5.
51712 = |2

Mo element on left side
of 7,50 no change in its

here checking
on left side of

2

=" As 7>4 therfore 7 will

be moved forward and 4
will be moved to 7's
position.

As 7=5,7 will be moved
forveard,but 4 <5,50 no
change in position of 4.
And 5 will be moved to
position of 7,

As all the element on left side
of 2 are greater than 2,50 all
the elements will be moved
forward and 2 will be shifted
to position of 4

Insertion Sort

Step 1 - Ifitis the first element, it is already sorted. return 1;

Step 2 - Pick next element

Step 3 - Compare with all elements in the sorted sub-list

Step 4 - Shift all the elements in the sorted sub-list that is greater than the value to be sorted
Step 5 - Insert the value

Step 6 — Repeat until list is sorted

O0(n)
The worst case occurs when the array is sorted in reverse order.
So the worst case time complexity of insertion sort is 0(n?)

Insertion Sort

: y
i 12<45,
85| 12| 59 | 45 [72 | 51 | (Assume8Sisa 12| 45| 59 | 85 | 72 | 51 insert 45 in
1st item (: that place
- B5=T2 , shift
C | 85 59| 45| 72| 51| %0 e nont c 12| 45| 59 85 | 51 it to the right
. 59=T2, 50
o insert 12 - :
12| 85| 59 | 45 | 72 | 51 s 12| 45| 59 | 72 | 85 | 51 insert 72 n
; i 85>59 |, shift i 85=51 , shift
12| ‘ 85| 45| 72| 51| il the nont 12| 45| 59 | 72 85 it to the right
C 12| 50| 85|45 | 72 |51 | raeise; [;
insert 5% in
T72>51 , shift
C that p|EDE 12 45‘ 59' ?2 35 it ta the tht
12| 59 85| 72| 51| o the nan C
it to the right
59=51 , shift
C 12| 45 ‘ 59| 72| 85 A
| 59>45 , shift g 45<51, so
12' isa‘ 85| 72| 51| ittothe right 12| 45| 51|59 |72 |85 insert 51 in
that place

Image Source: Link

https://www.w3resource.com/c-programming-exercises/searching-and-sorting/c-search-and-sorting-exercise-4.php

Insertion Sort

1 0 Y
2 int main() i oart 451
2 85| 12| 59| 45|72 |51 o v g 12| 45| 59 | 85 | 72 | 51 insert 45 in
= { 1st item that place
4 int arra[l©],1,],n,array_key; ¢—“J (; ;——J
_ . i B5=>72 | shift
5 ("Input no. of values in the array: BH 85| so| as| 72| 51| R iieim 12| 45| 59 85 | 51 it to the right
'_5 (1]] ; n) ; (_’ %0 insert 12 C 59<72, so
7 ("Input array value(s): \n",n); 12| 85] 59145172 |51 | it et place _| 1S 45N SR 73 854 51] fwnre
8 (i=0;i<n;i++) (_ {__J (} Y
_ c > i
9 ("%d",2arra[1]); C 12 85| 45| 72| 51| iateoon 12| 45| 59 | 72 85 2o e nont
* Insertion Sort */ 12<59, —
(i .3 I 12| 59| 85|45 [72 [51 | insertsom Q Y (st st
J 3 N C that place 12| 45| 59 72| 85 1 1o the right
. Y 85>45 , shift C —
array_key arra[i]; 12| 59 85| 72| 51| itto the right Y
. . 12 | 45 59| 72 | 85 59>51 , shift
j i . C it to the right
> '_I
: - J i Q 45<51, so
((J arra[j] array_key) 12 59| 85| 72| 51| Riemengnt y 12| 45| 51 |59 | 72 | 85 insert 51 in
at place

arralj arral[j];
J =3-1;
}

arra[j array_key;

("Sorted Array:
(i=e; i < n; i++)
(" ", arra[i]);

Source: Link

https://www.w3resource.com/c-programming-exercises/searching-and-sorting/c-search-and-sorting-exercise-4.php

l_'l.

L M

B ® Wo~No wu b

el

Insertion Sort

int main() {
1nt arra[1, 1, j, n, array_key;

. : , y
Input the faﬂféﬁ of values in the array

(”Input no. of values in the array:

(rr rrJ n)_

-I-
Input array values

(”Input array value(s):
(i ;i<n i
("%d", &arra[i]);

P n L
/* Insertion Sort *;

(1 ; 1 <n; ivt) {

Logical Operators

| overator | Description | Example |

X=6
y=3

X<10 && y>1 Return True
X=6
y=3

X==3 || y==5 Return False
X=6
y=3

l(x==y) Return True

array_key = arra[i];
.3 i _
'/ Move elemgntS~yreqkeF than array_ke)

3r'a[3] array_ key) {

arra[j];

-

W M=

=

MR MR M BB

=] O

Insertion Sort (Complete Code)

l_'l.

int main() {
int arra[l2], 1 ',], N, array_ key,
Input the number *—’ ._':;;__ ues *._r. the arrav

(”Input no. of values in the array

(” m n)

L M

] v un &

gLuUes

array value(s): - P
n; 1

arral[i]);

.r:I;'i) {
arra[i];
j =1

T 1 .._,..—-..

arra[J] array key) {
arra[j arral[jl;

T =3

}

arra[J] éFra}_key;

el al =T

rr:. rt arrayv eev at 1ts col
| I L4 = L L | P e

:_.-‘1‘: ,*—' —',-*_.__] -*—.ﬂ array

(”Sorted Array: h);
(1 3 1 < ny i+s)
(" ", arra[i]);

] O U0 B

| S I I L R |

Insertion Sort

Bubble Sort Selection Sort Insertion Sort
Simple Sorting Simple Sorting Simple Sorting
Algorithm Algorithm Algorithm
Compares neighboring Takes the smallest Transfer one element

elements element and moves it at a time to its place
into its place
Swap based sorting In-place sorting Complex but fast

Insertion Sort 4 3 6 5

Merge Sort

* Merge sort is a sorting algorithm that works by dividing an array into smaller
subarrays, sorting each subarray, and then merging the sorted subarrays back
together to form the final sorted array.

* In simple terms, we can say that the process of merge sort is to divide the array
into two halves, sort each half, and then merge the sorted halves back together.
This process is repeated until the entire array is sorted.

Step 1: Find the middle index of the array.

Step 2: Divide the array from the middle.
Step 3: Call merge sort for the first half of the array

Merge Sort

Middle = 1 + (last — first)/2 e ~a

MergeSort(array, first, middle) a “a a S

Step 4: Call merge sort for the second half of the array. ‘ 4 ‘ | 2 ‘ 6 ‘ | 0

MergeSort(array, middle+1, last)

Step 5: Merge the two sorted halves into a single sorted array. ~a o “a x

Overall time complexity of Merge sort is O(n log n). 0 5 4 6

It is more efficient as it is in worst case also the runtime is O(n log n).
The space complexity of Merge sort is O(n).

This means that this algorithm takes a lot of space and may slower down operations for the last data sets

Merge Sort

* Which searching algorithm you feel is similar to merge sort ?

* Concerns for Merge Sort?

Try to Implement it your self

Quick Sort

* Like Merge Sort, QuickSort is a Divide and Conquer algorithm.
* |t picks an element as a pivot and partitions the given array around the picked pivot.

* There are many different versions of quickSort that pick pivot in different ways.

Always pick the first element as a pivot.

Always pick the last element as a pivot (implemented below)
Pick a random element as a pivot.

Pick median as the pivot.

B wN e

...... o
LM
(T
(']
o
™M N
~
o
Lo |
P 8
c b
O 3
._qua ~E
~
4 o
-+ — —
S o0
O% < | bt
.]
Cup " o0
N 9 A I I
omw _d_-
US =
g = -

@606 ® 666

Quick Sort

e Complexity: O(n log n).
* Highly dependent on the selection of pivot

» Worst Case 0(n?): when the picked pivot is always an extreme (smallest or largest) element.
This happens when input array is sorted or reverse sorted and either first or last element is

picked as pivot.
Pivot

|

5 15 2 -2 6 10 12 6

Image Source: Link

https://blog.shahadmahmud.com/quicksort/

Quick Sort

int main(){
int i1, count, number[25];
("How many elements are u going to enter?: ");
("%d",&count);
("Enter elements:
(1=0;i<count;i++)

1l

, count);

("%d",&number[1]);
quicksort(number,©,count-1);
("Order of Sorted elements: ");
(i=0;i<count;i++)
(" " ,number[i]);

w B =

] O LN B

Quick Sort

void quicksort(int number[25],int first,int last){
int i, j, pivot, temp;
(first<last){
pivot=first;
i=Ffirst;
j=1last;
i |
(number[i]<=number[pivot]
1++;
(number[j]>number[pivot])

33

(1<3){
temp=number[i];
number[i]=number[j];
number[j]=temp;

} }
temp=number[pivot];
number[pivot]=number[j];
number[j]=temp;
quicksort(number,first,j-1);
quicksort(number,j+1,last);

quicksort(number,6,count-1);

Pick an element from the array, this element is called as
pivot element.
Divide the unsorted array of elements in two arrays
a) Values less than the pivot come in the first sub
array
b) Values greater than the pivot come in the second
sub-array (equal values can go either way).
Recursively repeat the step 2(until the sub-arrays are
sorted) to the sub-array of elements with smaller values
and separately to the sub-array of elements with greater
values.

The same logic we have implemented in the following C
program.

Quick Sort

temp=number[pivot];
number[pivot]=number[j];
number[j]=temp;
quicksort(number,first,j-1);

| R]

void quicksort(int number[25],int first,int last)

{

L
] v un B

int i, j, pivot, temp;
(first<last)

o I S LI L R LR L

] Oh N B

8 quicksort(number,j+1,last);
{ 9
pivot=first; //First element as pivot 30 }

8 i=Ffirst; 31 }

9 j=last; 32 - int main(){

10 33 int i1, count, number[25];

11 (1<3) 34 ("How many elements are u going to enter?: ");
12 { 35 ("%d",&count);

3 (number[i]<=number[pivot]&&i<last) 36 ("Enter elements: ", count);
14 1++; 37 (1i=0;i<count;i++)

5 (number[j]>number[pivot]) 38 ("%d" ,&number[i]);
16 J--3; 39 quicksort(number,@,count-1);
17 (i<3) 40 ("Order of Sorted elements: ");
18 { 41 (i=0;i<count;i++)
19 temp=number[i]; 42 (" %d",number[i]);
20 number[i]=number[j];| 43 H
21 number[j]=temp;]
22 }
23 } Line 7:

* pivot=last; * Pivot =rand()
* mid = (first + last) / 2;

Median

int main() {
int a[] = {2,3,8,5,1};
int n H
int sum,i;
sort(a,n);

void swap(int *p,int *q)
{
int t;
t="p;
p="q;
q=t;

(int 1 ;1
"Array[

(n+1)

("\n Median

}

void sort(int a[],int n)

{

[]
k]

int 1,j,temp;
(i 31 < n-1j;i+4)
{ What will be the output?

(] 3J < n-i-1;j++)

(a[3] > a[3j+1])
swap(&a[j],&a[j+1]);

{

Summary

Bubble Sort letd
Selection]
Sort 0(n”)
Insertion
Sort O(n)

* The list/array must be sorted
* Divide and conquer method

O(log, n)

Searching

Linear

Oo(n)

* Large Data an issue

End of Second week

Do try to implement the codes by your self to better
understand the working

* Assignment — 1 (Plagiarism check is enable on the canvas)

* Assigned: 22" Jan
* Due: 29" Jan (End of day as per Canvas)

