CS 2124: DATA STRUCTURES
Spring 2024

e 7% Lecture

* Topics: Introduction to Trees

Topics

1. Introduction to Trees 4. Traversal Implementation: Recursive
|. Binary Trees 5. Traversal Implementation: Using Stacks
i. Types of Binary Trees 6. Applications

Il. Building A Binary Search Tree (BST)
I. Insert into an empty BST
ii. Duplicate Removal in BST
Ill. Binary Tree Traversal
I Preorder Traversal
ii. Inorder Traversal
iii. Post order Traversal

2. Expressions as Trees

3. Building Trees

_) Assignment:
|. Binary Trees: Dynamic Nodes

1. No PDF file

2. A copy paste of output in their PDF file rather then screenshot.

3. Screenshot of entire screen rather then the code and output (like in lectures)
4. EXE file being submitted in zip file on Canvas

Introduction (What we have covered)

* There are many basic data structures that can be used to solve application problems.

* Array is a good static data structure that can be accessed randomly and is fairly easy to
implement.
* Insertion and deletion can be time consuming due to memory management

e Array are not dynamic (i.e. The size of an array is determined at compile time)

index 0 1 2 3 4 5 6 /7 8 89

value 37|59 | -7 |20 2 88|-3/49 |50 |73

| | |

First element Fifth element | | 9-th element

Introduction (What we have covered)

Linked Lists on the other hand is dynamic and is ideal for application that requires frequent

operations such as add, delete, and update.
* One drawback of linked list is that data access is sequential.
* Then there are other specialized data structures like, stacks and queues that allows us to solve

complicated problems using these restricted data structures.

ITEM:

5 :
, /A . 1 :
& O % (9 _
A \\\{]’45‘ - ""1::»; , ::,:

NODE2 NODES

Introduction

* One of the disadvantages of using an array (unsorted) or linked list to store data is the time
necessary to search for an item.
* Since both the arrays and Linked Lists are linear structures the time required to search a
“linear” list is proportional to the size of the data set.
* For example, if the size of the data set is n, then the number of comparisons needed to find
(or not find) an item may be as bad as some multiple of n.

log(n)
" binary search

search time

number of elements

Introduction

* In this lecture lets Extend the concept of linked data structure (linked list, stack, queue) to a
structure that may have multiple relations among its nodes.

e Such a structure is called a tree.

* Atreeis a collection of nodes connected by directed (or undirected) edges.

Data Structure

Linear data Non- Linear data

Applications
Structure Structure

Storing naturally hierarchical data

Database indexing

Parsing (Process of breaking down code into its component)
Artificial Intelligence

Cryptography

N

Tree

* A tree is a nonlinear data structure, compared to arrays, linked
lists, stacks and queues which are linear data structures.

e A tree can be empty with no nodes or a tree is a structure
consisting of one node called the root and zero or one or more
subtrees.

* Atree has following general properties:

* One node is distinguished as a root (A)

* Every node (exclude a root) is connected by a directed edge
from exactly one other node

* Adirection is: parent -> children

-

A is a parent of
is called a child of A.
is a parent of

Tree

In the picture, the root has 3 subtrees.

e Subtree Root:
* NodeB
* Node K
* NodeD

Tree

In the picture, the root has 3 subtrees (i.e. B, K, D)
Each node can have arbitrary number of children.

Nodes with no children are called leaves, or external nodes.
* Inthe picture, C, E, F, L, G are leaves or external nodes.

Nodes, which are not leaves, are called internal nodes.
Internal nodes have at least one child.

o

A

D@ @

Tree

In the picture, the root has 3 subtrees (i.e. B, K, D)
Each node can have arbitrary number of children.

Nodes with no children are called leaves, or external nodes.
* Inthe picture, C, E, F, L, G are leaves or external nodes.

Nodes, which are not leaves, are called internal nodes.
Internal nodes have at least one child.
Nodes with the same parent are called siblings.

* Inthe picture, B, C, D are called siblings.

‘o

A

D@ @

Tree

In the picture, the root has 3 subtrees (i.e. B, K, D)

Each node can have arbitrary number of children.

Nodes with no children are called leaves, or external nodes.
* Inthe picture, C, E, F, L, G are leaves or external nodes.

Nodes, which are not leaves, are called internal nodes.

Internal nodes have at least one child. = € =
Nodes with the same parent are called siblings.
* Inthe picture, B, C, D are called siblings.
The depth of a node is the number of edges from the root to the
node. E K F

 The depth of Kiis 2.

Tree

In the picture, the root has 3 subtrees (i.e. B, K, D)
Each node can have arbitrary number of children.
Nodes with no children are called leaves, or external nodes.
* Inthe picture, C, E, F, L, G are leaves or external nodes.
Nodes, which are not leaves, are called internal nodes.
Internal nodes have at least one child.
Nodes with the same parent are called siblings.
* Inthe picture, B, C, D are called siblings.
The depth (d) of a node is the number of edges from the root to the
node.
 The depth of K'is 2.
The height (h) of a node is the number of edges from the node to the
deepest leaf.
* The height of B is 2.

‘o

A

D@ @

Tree

In the picture, the root has 3 subtrees (i.e. B, K, D)
Each node can have arbitrary number of children.
Nodes with no children are called leaves, or external nodes.
* Inthe picture, C, E, F, L, G are leaves or external nodes.
Nodes, which are not leaves, are called internal nodes. B
Internal nodes have at least one child.
Nodes with the same parent are called siblings.
* Inthe picture, B, C, D are called siblings.
The depth of a node is the number of edges from the root to the
node. E
 The depth of K'is 2.
The height of a node is the number of edges from the node to the
deepest leaf.
* The height of B is 2.
The height of a tree is a height of a root.

?

A

D@ @

»

Tree Data Structure
Root Key
A
—
Edge e e e s Level 0
— Node
________________ e -1V |
Subtree ——» A AL .
Height
ofthe | A Dk d E o @ Jree F e Level 2
tree |\ L NN~ Ny
--- Level3
N L e T S B L e W B B € s () B Level 4
eaf Nodes
Height (h) and
depth (d) of each

node in a tree

Image Source

https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/

Binary Tree

data item

x \ \, P 4) Toug

address of left child \. address of right child

NULL NULL NULL NULL E a

* A binary tree is a structurally complete data structure in which each node has at most two
children.

* A binary tree usually has two nodes, called the left and right nodes, with the left being less
than the right.

e Binary trees are generally used for quick storage and retrieval of data. Because each node can
only have two children, it is easy to find a particular data piece without searching through the
entire structure.

Binary Tree

data item

K~ N/ U

address of left child . address of right child

* Additionally, binary trees can be traversed using either a recursive or

NULL NULL NULL NULL

* As a result, a binary tree in the data structure is often used when performance is critical, such
as in real-time applications.

e Binary search tree (BST): Used to search applications where data is continuously entering and leaving.
e Binary space partition: Used in 3D video games to determine what objects need to be rendered.
* Binary trees: Used by high-bandwidth routers for storing router tables, implementing dictionaries, spelling checking etc.

Terminologies Associated with Binary Trees

Ancestor Nodes: Any node that is higher up in the tree than a given child node.
Descendant Nodes: Any node that is lower down in the tree than a given parent node.
Climbing/Ascending: Traversing from leaf to root

Walking/Descending: Traversing from root to leaf

Root Node, Child Node, Sibling Nodes, Leaf Nodes, Internal Nodes, Height, Depth (Already discussed)
Root

& Ancestor

Subtree Descendant

Leaf
(Terminal node)

Types of Binary Tree (Completion of levels)

Full Binary Tree: Every parent
node/internal node has
either two or no children.

Parent node

@

Types of Binary Tree (Completion of levels)

Full Binary Tree: Every parent Perfect Binary Tree: Every
node/internal node has internal node has exactly two
either two or no children. child nodes and all the leaf

nodes are at the same level

Internal Nodes

)

Leaf Nodes same level

I

Types of Binary Tree (Completion of levels)

A complete binary tree is just like a full binary tree,

Full Binary Tree: Every parent Perfect Binary Tree: Every 5 th or diff
node/internal node has internal node has exactly two L | UtIWIt twcl)omajor II erTanE.!ﬁ q
either two or no children. child nodes and all the leaf . Every level must be completely filled, except

possibly the last level

2. All the leaf elements must lean towards the left.

e The last leaf element might not have a right
sibling i.e. a complete binary tree doesn't have to
be a full binary tree.

nodes are at the same level

Types of Binary Tree (Completion of levels)

* Skewed Binary Tree

A skewed binary tree is a pathological/degenerate tree in which the tree is either
dominated by the left nodes or the right nodes. Thus, there are two types of
A skewed binary tree: left-skewed binary tree and right-skewed binary tree.

Left Skew

A

Right Skew B

Types of Binary Tree (Completion of levels)

« Skewed Binary Tree A skewed binary tree is a pathological/degenerate tree in which the tree is either
dominated by the left nodes or the right nodes. Thus, there are two types of skewed

binary tree: left-skewed binary tree and right-skewed binary tree.

Left Skew

A

D Right Skew

Degenerate (or pathological) tree
A Tree where every internal node has one child. Such trees are performance-wise

same as linked list.
A degenerate or pathological tree is a tree having a single child either left or right.

Degenerate (or pathological) tree

Types of Binary Tree

Paper: Skewed Binary Search Trees (Source: Link)

In this paper we present an experimental study of various memory layouts of static skewed binary search trees,
where each element in the tree is accessed with a uniform probability.

Our results show that for many of the memory layouts we consider skewed binary search trees can perform better
than perfect balanced search trees.

The improvements in the running time are on the order of 15%.

Previous work has shown that a dominating factor over the running time for a search is the number of cache
faults performed, and that an appropriate memory layout of a binary search tree can reduce the number of cache

faults by several hundred percent.

https://link.springer.com/chapter/10.1007/11841036_63

Binary Tree (Array)

Trees can be represented in two ways :
 Dynamic Node Representation (Linked Representation).
* Array Representation (Sequential Representation).

1 A
-
2/ \3

1 2 3 4 3]

Tree Array :A‘B‘C‘D‘-E_

6 7 8 g 10 11
\DIF_\D‘\U‘G}H‘

ey

S D '\UH\U\G v

Source: Link

https://www.enjoyalgorithms.com/blog/introduction-to-binary-tree

Binary Search Tree (BST)

10

* Binary search tree is a data structure that quickly allows us to o
maintain a sorted list of numbers.

* It is called a binary tree because each tree node has a o o
maximum of two children.

e It is called a search tree because it can be used to search for 0 o o o
the presence of a number in O(log(n)) time.

Binary Search Tree (BST) ;

* Binary search tree is a data structure that quickly allows us to
maintain a sorted list of numbers.

* It is called a binary tree because each tree node has a
maximum of two children.

* |tis called a search tree because it can be used to search for
the presence of a number in O(log(n)) time.

struct node {
int data; //node will store s
struct node *right_child; // r
struct node *left_child; //

};

T

o

=]
!

+~URncT1o0n T cregre o nooe

struct node* new_node(int x) {
struct node “temp;
temp ((struct node));
temp data = x;
temp left _child

temp right_child

temp;

Binary Search Tree (BST)

10

* Binary search tree is a data structure that quickly allows us to
maintain a sorted list of numbers.

* It is called a binary tree because each tree node has a
maximum of two children.

* |tis called a search tree because it can be used to search for
the presence of a number in O(log(n)) time.

struct node {
int data; //node will
struct node
struct node

-
ot
-
-
=]
e

 The properties that separate a binary search tree from a regular Bts //function to cre
binary tree is 1 - struct node* new_n
12 struct node “temp;
1. All nodes of left subtree are less than the root node 13 temp (° (struct node));
2. All nodes of right subtree are more than the root node 14 temp -> data = x;
. 15 temp left_child
3. Both subtrees of each node are also BSTs i.e. they have the EEEEET right_child

above two properties
temp;

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 . If new node is < current, move left
- If new node is >= current, move right

- Repeat this until current is null. Insert it here.
e This is similar to binary search of an array

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 - If new node is < current, move left
- If new node is >= current, move right
- Repeat this until current is null. Insert it here.
° e This is similar to binary search of an array

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 - If new node is < current, move left
- If new node is >= current, move right
- Repeat this until current is null. Insert it here.
° e This is similar to binary search of an array

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 - If new node is < current, move left
- If new node is >= current, move right
- Repeat this until current is null. Insert it here.
e This is similar to binary search of an array
3 10

/

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 - If new node is < current, move left
- If new node is >= current, move right
- Repeat this until current is null. Insert it here.
e This is similar to binary search of an array
3 10

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 - If new node is < current, move left
- If new node is >= current, move right
- Repeat this until current is null. Insert it here.
e This is similar to binary search of an array
3 10
1 6

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 - If new node is < current, move left
- If new node is >= current, move right
- Repeat this until current is null. Insert it here.
° e This is similar to binary search of an array

struct node insert(struct node * root, int x) {

P P LR U g o
//searching for the place to

ace To 1hsept

(root)
new_node(x);

(x > root data) // x is greater. Should be 1
root rlght child 1nsert(roct right_child, x),

] O N B W

smaller and should be inserted to lLeft

root 5 ieft child = insert(root left_child, x);
root;

@ W0 o

(o)
I

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 - If new node is < current, move left
- If new node is >= current, move right
- Repeat this until current is null. Insert it here.
e This is similar to binary search of an array
3 10 Searching ?

- l /) eo archi .r‘. aq operc at1o n

) = = "'|""- L

6 22 - struct node” search(struct node * root, 1nt x) {
23 (root root data X) ,
24 root;
(x > root data) , 1s greater,

search(root rlght chlld, X);

b
-

Lo ol S0 we

- search(root . 1eft chlld, x),

Binary Search Tree(BST)

e Insert a new node starting at the root (set current node to root)

Elements: 8,3,10,1,6,4 . If new node is < current, move left
- If new node is >= current, move right

- Repeat this until current is null. Insert it here.
e This is similar to binary search of an array

21 // searching operation

22 - struct node* search(struct node * root, 1nt x) {

23 (root root data x) //1f root->data 1
root;

(x > root data) , i1s greater, so we will

search(root rlght ch11d x)

W
(B
o

;)

1 N =

e oM T ‘.‘.a.‘.

JRNMN NN

1S SMC l—:'" Lrdr e

. search(root left ch11d x)

1nsert(struct node * root, int x) {

=

S i P Ry
Lng for the place to insert

(root)
new_node(x);
(x > root data) // x 1is greater.
root rlght ch11d 1nsert(r00t

ul B ow pd

1 h

- _..___. chanl A he _Irr?_.___._,.'._.T 4.,.. L—

maLLel ard -.-."-.—-I.— e

root -> ieft ch11d 1nsert(r00t left_child, i);
root;

I':'-l'_'p '|fl |;:l'.|

I
'_l.
—

Binary Search Tree(BST - Example)

Elements: 8,3,10,1,6,2 Elements: 5,2,7,1,7,2
3 10 2 7
/ \ Is this a BST? / \

1 6 1 2

L

See node 2!!
Not correctly places in the tree

Binary Search Tree(BST - Example)

1. Store the duplicate element in the Ieft or right subtree

Elements: 5,2,7,1,7,2

) NG AL w1

/ \ \ 2. Stores the count of the node. So the count of Node 5 will be 2
1 2 7

(w) @u
) Gw)

Source: Link

https://www.codingninjas.com/studio/library/handling-duplicates-in-bst

