CS 3333: Mathematical Foundations

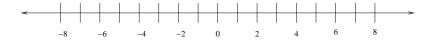
Number Theory

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

Integers - Whole numbers written using the ten numerals 0, 1, 2, ..., 9 where the position of a numeral dictates the value it represents.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Integers Whole numbers written using the ten numerals 0, 1, 2, ..., 9 where the position of a numeral dictates the value it represents.
- ► The set of all integers is denoted by Z (i.e. Z = {..., -2, -1, 0, 1, 2, ...}).



Natural Numbers - the set of all "counting integers". The set of natural numbers is denoted by N.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

▶ **Natural Numbers** - the set of all "counting integers". The set of natural numbers is denoted by *N*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Sometimes is the set of all positive integers (i.e. N = {1,2,3,...}).

Natural Numbers - the set of all "counting integers". The set of natural numbers is denoted by N.

- ► Sometimes is the set of all positive integers (i.e. N = {1,2,3,...}).
- Sometimes is the set of all non-negative integers (i.e. N = {0,1,2,...}).

• If a is an integer, then |a| denotes the absolute value of a.

- If a is an integer, then |a| denotes the absolute value of a.
- ▶ If a is a positive integer, then |a| = a (e.g. if a = 13, then |a| = 13).

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- If a is an integer, then |a| denotes the absolute value of a.
- ▶ If a is a positive integer, then |a| = a (e.g. if a = 13, then |a| = 13).
- If a is a negative integer, then |a| = -a (e.g. if a = -13, then |a| = 13).

• Let a and b be integers such that $a \neq 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

- Let a and b be integers such that $a \neq 0$.
- Definition: We say a divides b if there is an integer c such that b = ac, denoted a | b.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Let a and b be integers such that $a \neq 0$.
- Definition: We say a divides b if there is an integer c such that b = ac, denoted a | b.
- If there is no integer c such that b = ac then a does not divide b, denoted a ∤ b.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Definition: We say a divides b if there is an integer c such that b = ac, denoted a | b.

Definition: We say a divides b if there is an integer c such that b = ac, denoted a | b.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: Does 9 divide 36?

Definition: We say a divides b if there is an integer c such that b = ac, denoted a | b.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: Does 9 divide 36?

Definition: We say a divides b if there is an integer c such that b = ac, denoted a | b.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Example: Does 9 divide 36?
 - ► Yes. 36 = 9*4 (c = 4).
- Example: Does 11 divide 120?

Definition: We say a divides b if there is an integer c such that b = ac, denoted a | b.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Example: Does 9 divide 36?
 - Yes. 36 = 9*4 (c = 4).
- Example: Does 11 divide 120?
 - $11 \cdot 10 = 110$ and $11 \cdot 11 = 121$, so $11 \nmid 120$.

▶ Let n and d be positive integers. How many positive integers ≤ n are divisible by d?

▶ Let n and d be positive integers. How many positive integers ≤ n are divisible by d?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

▶ Let n and d be positive integers. How many positive integers ≤ n are divisible by d?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- We need to find an integer k such that
 - 1. $kd \le n$ 2. (k+1)d > n

• Therefore we want the largest k such that $kd \leq n$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

• Therefore we want the largest k such that $kd \leq n$.

kd ≤ n

• Therefore we want the largest k such that $kd \leq n$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

•
$$kd \leq n \implies k \leq n/d$$

• Therefore we want the largest k such that $kd \leq n$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

 $\blacktriangleright kd \leq n \implies k \leq n/d \implies k = \lfloor n/d \rfloor.$

- Therefore we want the largest k such that $kd \leq n$.
- $\blacktriangleright \ kd \le n \implies k \le n/d \implies k = \lfloor n/d \rfloor.$
- $\lceil x \rceil$ is the smallest integer $\ge x$ (ceiling function).

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Therefore we want the largest k such that $kd \leq n$.

$$kd \le n \implies k \le n/d \implies k = \lfloor n/d \rfloor.$$

• $\lceil x \rceil$ is the smallest integer $\ge x$ (ceiling function).

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• $\lfloor x \rfloor$ is the largest integer $\leq x$ (floor function).

• Therefore we want the largest k such that $kd \leq n$.

$$kd \le n \implies k \le n/d \implies k = \lfloor n/d \rfloor.$$

- $\lceil x \rceil$ is the smallest integer $\ge x$ (ceiling function).
- $\lfloor x \rfloor$ is the largest integer $\leq x$ (floor function).
- Examples:

 $\lceil 11.7\rceil = 12; \lfloor 11.7 \rfloor = 11; \lceil -5.3 \rceil = -5; \lfloor -5.3 \rfloor = -6$

• **Theorem 1**: Let a, b, and c be integers and $a \neq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- 1. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.
- 2. If $a \mid b$, then $a \mid bc$.
- 3. If $a \mid b$ and $b \mid c, b \neq 0$, then $a \mid c$.
- How can we prove Theorem 1?

Problem 8 [KR] Sec. 4.1: Prove or disprove: if a | bc, then a | b or a | c.

Problem 8 [KR] Sec. 4.1: Prove or disprove: if a | bc, then a | b or a | c.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

False. Counterexample: a = 4, b = 2, and c = 6.

▶ Problem 7 [KR] Sec. 4.1: Let a, b, and c be integers such that $a \neq 0$ and $c \neq 0$. Prove or disprove: if $ac \mid bc$, then $a \mid b$.

Corollary 1: Let a, b, and c be integers such that a ≠ 0. If a | b and a | c, then a | (mb + nc) whenever m and n are integers.

Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- ▶ Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Terminology: a = dividend, d = divisor, q = quotient, and r = remainder.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Terminology: a = dividend, d = divisor, q = quotient, and r = remainder.

• Note: $q = \frac{a-r}{d}$.

- Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Terminology: a = dividend, d = divisor, q = quotient, and r = remainder.

- Note: $q = \frac{a-r}{d}$.
- $q = a \operatorname{div} d$ and $r = a \operatorname{mod} d$.

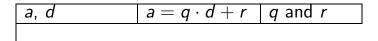
Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>

Examples:

- Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Examples:



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3		

- Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3	$11 = 3 \cdot 3 + 2$	

- Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3	$11 = 3 \cdot 3 + 2$	<i>q</i> = 3, <i>r</i> = 2
a = -11, d = 3		

- Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3	$11 = 3 \cdot 3 + 2$	<i>q</i> = 3, <i>r</i> = 2
a = -11, d = 3	$-11 = -4 \cdot 3 + 1$	

Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>

Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3	$11 = 3 \cdot 3 + 2$	q = 3, r = 2
a = -11, d = 3	$-11 = -4 \cdot 3 + 1$	q = -4, r = 1
a = 11, d = -3		

- Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>
- Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3	$11 = 3 \cdot 3 + 2$	q = 3, r = 2
a = -11, d = 3	$-11 = -4 \cdot 3 + 1$	q = -4, r = 1
a = 11, d = -3	$11 = -3 \cdot -3 + 2$	

Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>

Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3	$11 = 3 \cdot 3 + 2$	<i>q</i> = 3, <i>r</i> = 2
a = -11, d = 3	$-11 = -4 \cdot 3 + 1$	q = -4, r = 1
a = 11, d = -3	$11 = -3 \cdot -3 + 2$	q = -3, r = 2
a = -11, d = -3		

Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>

Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3	$11 = 3 \cdot 3 + 2$	q = 3, r = 2
a = -11, d = 3	$-11 = -4 \cdot 3 + 1$	q = -4, r = 1
a = 11, d = -3	$11 = -3 \cdot -3 + 2$	q = -3, r = 2
a = -11, d = -3	$-11 = 4 \cdot -3 + 1$	

Division Algorithm: Let a and d be integers with d ≠ 0. Then there exist unique integers q and r, 0 ≤ r < |d|, such that a = q ⋅ d + r.</p>

Examples:

a, d	$a = q \cdot d + r$	q and r
a = 11, d = 3	$11 = 3 \cdot 3 + 2$	q = 3, r = 2
a = -11, d = 3	$-11 = -4 \cdot 3 + 1$	q = -4, r = 1
a = 11, d = -3	$11 = -3 \cdot -3 + 2$	q = -3, r = 2
a = -11, d = -3	$-11 = 4 \cdot -3 + 1$	q = 4, r = 1

- The picture to have in mind:
- ▶ If *a* < 0:

- The picture to have in mind:
- ► If *a* < 0:

The picture to have in mind:

The picture to have in mind:

► If *a* > 0:

- The picture to have in mind:
- ► If *a* > 0:

- The picture to have in mind:
- ► If *a* > 0:

- The picture to have in mind:
- ► If *a* > 0:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで