CS 2124: DATA STRUCTURES
Spring 2024

Lecture 12.2
Topics: Breadth First Search (BFS), Depth First Search (DFS), and Dijkstra’s Algorithm

Spanning Trees

* If a graph is a complete graph with n vertices, then total number of spanning trees is n(*=2)

where n is the number of nodes in the graph.

n(=2) (n=5) = 56-2) = 56) 2

aa'@

4 N AN

Minimum Spanning Tree (MST)

* A minimum spanning tree (MST) is a subset of the edges of a connected, edge-weighted
graph that connects all the vertices together without any cycles and with the minimum
possible total edge weight.

* Itis a way of finding the most economical way to connect a set of vertices.

\fﬁ

XY

a1 a0 _
“\f,/’ B fﬂ':)

| ﬁ:’/l

[}f" NG RN,

Minimum Spanning Tree (MST)

A minimum spanning tree is a subgraph of an undirected weighted graph G, such that

It is a tree (i.e., It is acyclic)
« It covers all the vertices V
— Contains |V| - 1 edges

The total cost associated with tree edges is the minimum among all possible spanning trees
Not necessarily unique

Source

http://www.uoitc.edu.iq/images/documents/informatics-institute/Competitive_exam/DataStructures.pdf

Minimum Spanning Tree (MST)

A minimum spanning tree is a subgraph of an undirected weighted graph G, such that

itis a tree (i.e., it is acyclic)
it covers all the vertices V
— contains |V| - 1 edges

the total cost associated with tree edges is the minimum among all possible spanning trees

not necessarily unigue

2+4+4+5 =15

Pair of E

Weight

a,b/b,a

b,d/d,b

b,e/eb

e, d/de

c,d/d,c

c,a/a,c

a,d/d,a

NG A~ PAAIOUO]O | O

Source

http://www.uoitc.edu.iq/images/documents/informatics-institute/Competitive_exam/DataStructures.pdf

Spanning Trees

e MST (Minimum Spanning Tree) ?
e Itis a way of finding the most economical way to connect a set of vertices

B0 o1 (b2 |E3 _[F4_____
B-0 0 9

0 5 1
C-1 5 0 1 2
D-2 0 3 0 14 7
E-3 9 1 14 0 0
F-4 1 2 7 0 0

Kruskal Algorithm

Kruskal algorithm is used to generate a minimum spanning tree for a given graph.

Kruskal’s algorithm sorts all the edges in increasing order of their edge weights and keeps adding nodes to the
tree only if the chosen edge does not form any cycle.

Also, it picks the edge with a minimum cost at first and the edge with a maximum cost at last.

Hence, you can say that the Kruskal algorithm makes a locally optimal choice, intending to find the global optimal
solution.

That is why it is called a Greedy Algorithm.

Kruskal Algorithm

e Kruskal Algorithm:

Step 1: Sort all edges in increasing order of their edge weights.

Step 2: Pick the smallest edge.

Step 3: Check if the new edge creates a cycle or loop in a spanning tree.

Step 4: If it doesn’t form the cycle, then include that edge in MST. Otherwise, discard it.
Step 5: Repeat from step 2 until it includes |V| - 1 edges in MST.

Source Vertex | Destination Vertex | Weight
b f 1
b C 5
b e 9
C f 2
C e 1
C d 3
e d 14
f d 7

Source Vertex | Destination Vertex | Weight
b f 1
C e 1
C f 2
C d 3
b C 5
f d 7
b e 9
e d 14

Kruskal Algorithm

e Kruskal Algorithm:
» Step 1: Sort all edges in increasing order of their edge weights.
e Step 2: Pick the smallest edge.
» Step 3: Check if the new edge creates a cycle or loop in a spanning tree.
* Step 4: If it doesn’t form the cycle, then include that edge in MST. Otherwise, discard it.
e Step 5: Repeat from step 2 until it includes |V]| - 1 edges in MST.

Kruskal Algorithm

B D)

The Edges of the Graph Edge Weight
Source Vertex Destination Vertex
E F 2
F D 2
B C 3
C F 3
C D 4
B F 5
B D 6
A B 7
A ¢ 8 Edge BD should be discarded. Minimum Spanaing Tree.

Prim’s Algorithm for MST

* We have discussed Kruskal’s algorithm for Minimum Spanning Tree.
* Like Kruskal’s algorithm, Prim’s algorithm is also a Greedy algorithm.

* This algorithm always starts with a single node and moves through several adjacent nodes, in order to explore
all of the connected edges along the way.

Step 1: Determine an arbitrary vertex as the starting vertex of the MST.

Step 2: Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe vertex).
Step 3: Find edges connecting any tree vertex with the fringe vertices.

Step 4: Find the minimum among these edges.

Step 5: Add the chosen edge to the MST if it does not form any cycle.

Step 6: Return the MST and exit

Prim’s Algorithm for MST

Step 1: Determine an arbitrary vertex as the starting vertex of the MST.

Step 2: Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe vertex).
Step 3: Find edges connecting any tree vertex with the fringe vertices.

Step 4: Find the minimum among these edges.

Step 5: Add the chosen edge to the MST if it does not form any cycle.

Step 6: Return the MST and exit

e Ten o Jes ea
B-0 0 5 0 9 1
C-1 5 0 3 1 2
D-2 0 3 0 14 7
E-3 9 1 14 0 0
F-4 1 2 7 0 0

Prim’s Algorithm for MST

Step 1: Determine an arbitrary vertex as the starting vertex of the MST.

Step 2: Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe vertex).
Step 3: Find edges connecting any tree vertex with the fringe vertices.

Step 4: Find the minimum among these edges.

Step 5: Add the chosen edge to the MST if it does not form any cycle.

Step 6: Return the MST and exit

Prim’s Algorithm for MST

int main()
MST (Minimum Spanning Tree) ? [REER!

int graph[V][V] = {

primMST(graph);

Prim’s Algorithm for MST

Ay

int main()

{

}_.\

N

int graph[V][V] = {

O O O O O
W

(@]
-
-
-/
N
(@)
&

—+
N
o~
O
)
J
o
o
~
Q

prlmMST(graph),

F<->C

C<>E
B<->F

2
C<>D 3
1
1

Prim’s Algorithm

©-00

7
8 6 10

®-0-90

% RRORSO

5 9
0 - O ©
T 6 10
1 2

/0 ORAON
@

4 14

/°3 ,
¢ . o

00

Prim’s Algorithm (Steps 1/3)

@
™
®

@ - IO
8 g 6 10
ORROER0
Step 1: Firstly, we select an arbitrary vertex that acts as the starting vertex of the Minimum Spanning Tree. Here we have

selected vertex 0 as the starting vertex.

Step 2: All the edges connecting the incomplete MST and other vertices are the edges {0, 1} and {0, 7}. Between these two the
edge with minimum weight is {0, 1}. So include the edge and vertex 1 in the MST.

Step 3: The edges connecting the incomplete MST to other vertices are {0, 7}, {1, 7} and {1, 2}. Among these edges the minimum
weight is 8 which is of the edges {0, 7} and {1, 2}. Let us here include the edge {0, 7} and the vertex 7 in the MST. [We could have
also included edge {1, 2} and vertex 2 in the MST].

Prim’s Algorithm (Steps 2/3)

®

.0
©-®
e

©--©-06

Step 4: The edges that connect the incomplete MST with the fringe vertices are {1, 2}, {7, 6} and {7, 8}. Add the edge {7, 6} and the
vertex 6 in the MST as it has the least weight (i.e., 1).

Step 5: The connecting edges now are {7, 8}, {1, 2}, {6, 8} and {6, 5}. Include edge {6, 5} and vertex 5 in the MST as the edge has
the minimum weight (i.e., 2) among them.

Step 6: Among the current connecting edges, the edge {5, 2} has the minimum weight. So include that edge and the vertex 2 in
the MST.

Step 7: The connecting edges between the incomplete MST and the other edges are {2, 8}, {2, 3}, {5, 3} and {5, 4}. The edge with
minimum weight is edge {2, 8} which has weight 2. So include this edge and the vertex 8 in the MIST.

Step 8: See here that the edges {7, 8} and {2, 3} both have same weight which are minimum. But 7 is already part of MST. So we
will consider the edge {2, 3} and include that edge and vertex 3 in the MST.

Prim’s Algorithm (Steps 3/3)

ORNORYO
© + O+ O
ORNORY0O

Step 9: Only the vertex 4 remains to be included. The minimum weighted edge from the incomplete MST to 4 is {3, 4}.
The final structure of the MST is as follows and the weight of the edges of the MST is (4+8+1+2+4+2+7+9)=37.
 The prim's algorithm selects the root vertex in the beginning and then traverses from vertex to vertex adjacently.

On the other hand, Krushal's algorithm helps in generating the minimum spanning tree, initiating from the smallest weighted
edge.

Minimum Spanning Tree (MST) - Applications

* Minimum spanning tree analysis of brain networks: A systematic review of network size
effects, sensitivity for neuropsychiatric pathology, and disorder specificity (link)

1 AL v

A — ——

Epilepsy (higher frequency bands) Epilepsy (lower frequency bands)
Epilepsy (succesful treatment)
Neurogenerative disease:
Normal maturation bvFTD<AD<DLB<PDD *

Conditions with disturbances in
the cognitive domain of attention
(i.e. ADHD, delirium)

Figure 1. Schematic depiction of three different minimum spanning trees, with a starlike, intermediate and linelike configuration from left to
right. The green nodes represent leaf nodes. Central nodes are depicted in orange. Diameter is depicted in red. Individual conditions and the
correlated changes in network topology as described in the discussion section are displayed, with an arrow depicting the direction of the
change. For neurodegenerative diseases conditions are displayed left to right from having the least shift toward a more linelike topology
(bvFTD) to the most (PDD). AD, Alzheimer’s disease; bvFTD, behavioral variant of frontotemporal dementia; DLB, dementia with Lewy bodies;
PDD, Parkinson’s disease dementia.

https://doi.org/10.1162/netn_a_00245

Minimum Spanning Tree (MST) - Applications

* Graph Algorithms: Minimum Spanning Trees for Social Network Analysis (link)

These edges quantify how much Users are interacting with one another. Dermot and Henry exchange 5 likes or
comments every 24 hours, Daniel and Henry exchange 1 like or comment every 24 hours, Connor and Dakota

exchange 11 likes every 24 hours

Connor Raye — Dermot 5
7 \ / \
10 7
2
: . / \ /
akota ——________‘_h_q_h 3

Daniel] Camille

11

https://connorshorten300.medium.com/minimum-spanning-trees-for-social-network-analysis-bacecf5ee846

Single-Source Shortest Path Problem (SSSP)

* The problem of finding shortest paths from a source vertex v to all other vertices in the graph.
e Algorithms such as Breadth-First-Search (BFS) for unweighted graphs or Dijkstra solve this problem.

Shortest Path Problems

Dijkstra's algorithm

Dijkstra's algorithm - is a solution to the single-source shortest path problem in graph theory.

* With Dijkstra's Algorithm, you can find the shortest path between nodes in a graph. Particularly, you can find
the shortest path from a node (called the "source node") to all other nodes in the graph, producing a
shortest-path tree.

* This algorithm is used in GPS devices to find the shortest path between the current location and the
destination. It has broad applications in industry, specially in domains that require modeling networks.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex to all other
vertices

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

Dijkstra's Algorithm
1. Dijkstra's Algorithm basically starts at the node that you choose (the
source node) and it analyzes the graph to find the shortest path
o 6 e between that node and all the other nodes in the graph.
2. The algorithm keeps track of the currently known shortest distance from
each node to the source node and it updates these values if it finds a
shorter path.
: 2 e 3. Once the algorithm has found the shortest path between the source
node and another node, that node is marked as "visited" and added to
the path.
4. The process continues until all the nodes in the graph have been added
to the path. This way, we have a path that connects the source node to
0 1 G all other nodes following the shortest path possible to reach each node

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

6
° ° Shortast Previous
Vertex | distance
5 i vertex

-

A
B
C
D
E

Visited =[] Unvisited = [A, B, C, D, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

Consider the start vertex, A
Distance to Afrom A=0
Distances to all other vertices from A are unknown, therefore =< (infinity)

6
° ° Shortest Previous
Vertex distance
5 TR vertex

A 0

1 y 2 e s =

E oo

| > D =

O O —_
1

Visited =[] Unvisited = [A, B, C, D, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

If the calculated distance of a vertex is less than the known distance, update the
shortest distance

. 0+6=6
° e Shortest Previ
Vertex | distance Snbdain
5 ok vertex
5 A 0
1 2 O : .
C oo
g D 3
O O =
1

O+1=1
Visited = [] Unvisited = [A, B, C, D, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

Update the previous vertex for each of the updated distances
In this case we visited B and D via A

6 0+6=6
° Shortest Previ
Vertex | distance SN
5 from A vertex
5 A 0
1 2 O :: .
C oo
2 D 1 A
@ © E e
1

O+1=1
Visited =[] Unvisited = [A, B, C, D, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

Visit the unvisited vertex with the smallest known distance from the start vertex

SSIOFOREE Previous

Vertex | distance
vertex

fromA

This time around, it is vertex D

R

B (I & || A
C oo
E = oo

Visited = [A] Unvisited = [B, C, D, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

If the calculated distance of a vertex is less than the known distance, update the
shortest distance

1+42=3
Shortest Previ
Vertex | distance sl
5 Spae vertex
| 0
2 e B 3 A Update new weight

C co

2 D 1 A
E 2

1

1+1=2

Visited = [A] Unvisited = [B, C, D, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

Update the previous vertex for each of the updated distances
In this case we visited B and E via D

1+42=3
e Previous
Vertex | distance
5 PR vertex
0
B 3 D Update new path
C oo
. D 1 A
E 2 D

1+1=2

Visited = [A] Unvisited = [B, C, D, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

If the calculated distance of a vertex is less than the known distance, update the
shortest distance
We do not need to update the distance to B

6 2+2=4
° o S Previous
Vertex | distance
5 P vertex
2$5=7 0
2
¢) 2 3 D
7
2) 1 A
o K 0 5
1

Visited = [A, D] Unvisited = [B, C, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

Update the previous vertex for each of the updated distances
In this case we visited C via E

6 2+2=4
° Shortest Provi
Vertex | distance e
5 PSR vertex
2+ S5=7 0
1 2 2
B 3 D
C 7 E
2 1 A
o SEET
1

Visited = [A, D] Unvisited = [B, C, E]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

If the calculated distance of a vertex is less than the known distance, update the

Stortest Previous

Vertex | distance
vertex

fromA

shortest distance
We do not need to update the distance to C

We do not need to update it

)
c @

Ba > pEE O

Visited = [A, D, E] Unvisited = [B, C]

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

6
° G Shortest Previous
Vertex | distance
5 tooon i vertex
T S

0

3
7
1
2

e > ma O

Visited = [A, D, E, B, C] Unvisited =[] This shows the shortest path when we have A as the starting vector

Dijkstra’s Shortest Path Algorithm

* Objective: Find the shorted path from the given starting vertex (A) to every other graph

int main()

{
int graph[V][V] = {

WO CO 0O G

0

O O

8
9
e

91
..
3
5
6

D O

dijkstra(graph, 2);

Distance from Source

T I -

Visited = [A, D, E, B, C] Unvisited = [] This shows the shortest path when we have A as the starting vector

Applications of Dijkstra's Algorithm

- Traffic Information Systems are most prominent use

- Mapping (Map Quest, Google Maps)

- Routing Systems

. o i
g &g £ 3 RN |
|2 Civi oW e s%g &
z Cantar Plaza @ ¥ &8
[n] = x %@ A y' 4
-
% 7| &q’;} $ ap% Y ‘5® o . al
“ Sy <+ lﬁ% o A y S Q;,?% 7Y A8
& CENd % 5
= o < & T P &
Hayes B g S gy o
= % S &
nnnnnn = ‘2 “E:;@ %,’
Fall St i & /
95 pekary & p 2 o7 w / A
2) a‘@s@ s 1/ QJ% P
< NN NG | NARNGX
M= ﬁ‘i‘;& %ﬁ,\ b N Qﬁ‘&:&@@@ g --/;r;l"(go ;z ’/%?\p o \::\%@
S $ 0 %y 0 B N5 2
'90, el
Q% it "] & 7z % 1 ‘;5% @p&
o NN | &
“““““ 8 capn 0 % P (50
z G e NN\ e

L
e
b W & = &
%@ ™~ % o) &
13t S & o f = | =2 p

i >
= - L 2 N <
El = ._13rh&‘CenlraISkh2 ml = - % 4 o
£ | gl cwes (e {01 = Y¥Bivaion®
H — =
i tr hlarmeda St
~ 4
£ y
7 5 s %
5th
g £ L)
2 &
o oL I2L,
I
16th St % 3 I3
5 # B B
Frankl - & Y] w
& .ml al—= 17tn ¢
- Square g 2 i w ted
@ R 2 s < 2 Flayare
@ 5
IE!
i 8
w |2 - Mariposa 5L 1 e
P
g an® f
E] o e 160
= 2 |
T L4 St
g 2 g-
& & T =

Fowuter A
Routing Table

Togoto Foutewia
network: port #

10,0.0.0 1
20000 2
30.0.0.0 3 B
40000 1
Port 1
Fouter &

Port 2 Port 3

From Computer Desktop Encyclopedia

= 1992 The Computer Language Ca. Inc.

20.0.0.0

30.0.0.0

=]

40.0.0.0

Source

https://www.cs.utexas.edu/~tandy/barrera.ppt

A Gentle Introduction to Graph Neural
Networks

L] = = pus |

Graphs
are

all
around
us

Source

https://distill.pub/2021/gnn-intro/

