298 lines
8.4 KiB
Typst
298 lines
8.4 KiB
Typst
|
#set page(margin: (x: .5in, y: .5in))
|
||
|
|
||
|
#let solvein(solution) = {
|
||
|
let outset = 3pt
|
||
|
h(outset)
|
||
|
box(
|
||
|
outset: outset,
|
||
|
stroke: blue + .3pt,
|
||
|
fill: rgb(0, 149, 255, 15%),
|
||
|
radius: 4pt,
|
||
|
)[#solution]
|
||
|
}
|
||
|
|
||
|
#let solve(content) = [
|
||
|
#align(
|
||
|
center,
|
||
|
block(
|
||
|
inset: 5pt,
|
||
|
stroke: blue + .3pt,
|
||
|
fill: rgb(0, 149, 255, 15%),
|
||
|
radius: 4pt,
|
||
|
)[#align(left)[#content]],
|
||
|
)
|
||
|
]
|
||
|
|
||
|
#let notein(content) = {
|
||
|
let outset = 3pt
|
||
|
h(outset)
|
||
|
box(
|
||
|
outset: outset,
|
||
|
stroke: luma(20%) + .3pt,
|
||
|
fill: luma(95%),
|
||
|
radius: 4pt,
|
||
|
)[#content]
|
||
|
}
|
||
|
|
||
|
#let note(content) = [
|
||
|
#align(
|
||
|
center,
|
||
|
block(
|
||
|
inset: 5pt,
|
||
|
stroke: luma(20%) + .3pt,
|
||
|
fill: luma(95%),
|
||
|
radius: 4pt,
|
||
|
)[#align(left)[#content]],
|
||
|
)
|
||
|
]
|
||
|
|
||
|
#align(center)[
|
||
|
= CS 3333 Mathematical Foundations
|
||
|
Homework 2 (100 points)\
|
||
|
#underline[Price Hiller] *|* #underline[zfp106]
|
||
|
]
|
||
|
|
||
|
#line(length: 100%, stroke: .25pt)
|
||
|
|
||
|
= Submission:
|
||
|
|
||
|
Same as HW1.
|
||
|
|
||
|
= Questions
|
||
|
|
||
|
+ Answer Yes or No (12 pts).
|
||
|
#enum(
|
||
|
numbering: "a.",
|
||
|
[
|
||
|
Is $87 ≡ 51 (mod 5)$? #solvein[No]
|
||
|
],
|
||
|
[
|
||
|
Is $34 ≡ 14 (mod 3)$? #solvein[No]
|
||
|
],
|
||
|
[
|
||
|
Is $7 ≡ 55 (mod 24)$? #solvein[Yes]
|
||
|
],
|
||
|
[
|
||
|
Is $29 ≡ 41 (mod 12)$? #solvein[Yes]
|
||
|
],
|
||
|
)
|
||
|
+ List 5 integers that are congruent to 6 modulo 19 (10 points).
|
||
|
|
||
|
#solvein[
|
||
|
+ $6$, #notein[$∵ (6 - 6) mod 19 = 0$]
|
||
|
+ $25$, #notein[$∵ (25 - 6) mod 19 = 0$]
|
||
|
+ $44$, #notein[$∵ (44 - 6) mod 19 = 0$]
|
||
|
+ $63$, #notein[$∵ (63 - 6) mod 19 = 0$]
|
||
|
+ $82$, #notein[$∵ (82 - 6) mod 19 = 0$]
|
||
|
]
|
||
|
|
||
|
+ Calculate the following problems (18 pts).
|
||
|
#enum(
|
||
|
numbering: "a.",
|
||
|
[
|
||
|
$7+_(11) 34 =$ #solvein[$8$]
|
||
|
#note[
|
||
|
+ $(7 + 34) mod 11$
|
||
|
+ $(41) mod 11$
|
||
|
+ $8$
|
||
|
]
|
||
|
],
|
||
|
[
|
||
|
$5⋅_(13) 19 =$ #solvein[ $4$ ]
|
||
|
#note[
|
||
|
+ $(5 ⋅ 19) mod 13$
|
||
|
+ $(95) mod 13$
|
||
|
+ $4$
|
||
|
]
|
||
|
],
|
||
|
[
|
||
|
$17+_(11) 1 =$ #solvein[$7$]
|
||
|
#note[
|
||
|
+ $(17 + 1) mod 11$
|
||
|
+ $(18) mod 11$
|
||
|
+ $7$
|
||
|
]
|
||
|
],
|
||
|
[
|
||
|
$47+_(13) 0 =$ #solvein[$8$]
|
||
|
#note[
|
||
|
+ $(47 + 0) mod 13$
|
||
|
+ $(47) mod 13$
|
||
|
+ $8$
|
||
|
]
|
||
|
],
|
||
|
[
|
||
|
$55⋅_(11) 1 =$ #solvein[$0$]
|
||
|
#note[
|
||
|
+ $(55 ⋅ 1) mod 11$
|
||
|
+ $(55) mod 11$
|
||
|
+ $0$
|
||
|
]
|
||
|
],
|
||
|
[
|
||
|
$55⋅_(11) 0 =$ #solvein[$0$]
|
||
|
#note[
|
||
|
+ $(55 ⋅ 0) mod 11$
|
||
|
+ $(0) mod 11$
|
||
|
+ $0$
|
||
|
]
|
||
|
],
|
||
|
)
|
||
|
|
||
|
+ Find all positive primes $<= 50$ (You can just list the positive prime numbers directly.) (10 points).
|
||
|
|
||
|
#align(center)[
|
||
|
#solvein[
|
||
|
All primes $<= 50$
|
||
|
#table(
|
||
|
columns: (auto, auto, auto, auto, auto),
|
||
|
[2], [3], [5], [7], [11],
|
||
|
[13], [17], [19], [23], [29],
|
||
|
[31], [37], [41], [43], [47],
|
||
|
)]
|
||
|
#note[
|
||
|
Some Rust code to generate those primes :)
|
||
|
```rust
|
||
|
fn main() {
|
||
|
let is_prime = |num: usize| -> bool { num > 1 && !((2..num).any(|n| num % n == 0)) };
|
||
|
let primes: Vec<_> = (0..50).filter(|x| is_prime(*x)).collect();
|
||
|
println!(
|
||
|
"Prime numbers: {:?}\nNumber of prime numbers found: {}",
|
||
|
primes,
|
||
|
primes.len()
|
||
|
);
|
||
|
}
|
||
|
```
|
||
|
]
|
||
|
]
|
||
|
|
||
|
|
||
|
+ Find all positive integers less than $50$ that are relatively prime to $50$ (showing the $\g\cd$ is optional. You can list all the numbers.) (10 pts).
|
||
|
#align(center)[
|
||
|
#solvein[
|
||
|
All relative primes $< 50$
|
||
|
#table(
|
||
|
columns: (auto, auto, auto, auto, auto),
|
||
|
[2], [3], [5], [7], [ 11],
|
||
|
[13], [17], [19], [23], [29],
|
||
|
[31], [37], [41], [43], [47],
|
||
|
)]
|
||
|
#note[
|
||
|
Some Rust code to generate those co-primes :)
|
||
|
```rust
|
||
|
fn gcd(a: &usize, b: &usize) -> usize {
|
||
|
let mut a = *a; // Deref to avoid modifying the passed value
|
||
|
let mut b = *b; // Deref to avoid modifying the passed value
|
||
|
assert!(a != 0 && b != 0);
|
||
|
while b != 0 {
|
||
|
(a, b) = (b, a % b)
|
||
|
}
|
||
|
a
|
||
|
}
|
||
|
|
||
|
fn main() {
|
||
|
let relative_primes: Vec<_> = (1..51).filter(|x| gcd(x, &50) == 1).collect();
|
||
|
println!(
|
||
|
"Relatively prime numbers: {:?}\nNumber of relative prime numbers found: {}",
|
||
|
relative_primes,
|
||
|
relative_primes.len()
|
||
|
);
|
||
|
}
|
||
|
```
|
||
|
]
|
||
|
]
|
||
|
+ Express $\g\cd(990, 502) = 2$ as a linear combination of $990$ and $502$ by working backwards through the steps of the Euclidean algorithm (10pts). [Hint: refer to Example 17 in the textbook Section 4.3.8]
|
||
|
#note[
|
||
|
Working it fowards:
|
||
|
+ $990 = 1 ⋅ 502 + 488$
|
||
|
+ $502 = 1 ⋅ 488 + 14$
|
||
|
+ $488 = 34 ⋅ 14 + 12$
|
||
|
+ $14 = 1 ⋅ 12 + 2$
|
||
|
+ $12 = 6 ⋅ 2 + 0$
|
||
|
+ $\g\cd(990, 502) = 2$, from step $4$
|
||
|
|
||
|
Now backwards:
|
||
|
+ $2 = 14 - 1 ⋅ 12$
|
||
|
+ $2 = 14 - 1 ⋅ (488 - 34 ⋅ 14)$
|
||
|
+ $2 = -1 ⋅ 488 + 35 ⋅ 14$
|
||
|
+ $2 = -1 ⋅ 488 + 35 ⋅ (502 - 488)$
|
||
|
+ $2 = -36 ⋅ 488 + 35 ⋅ 502$
|
||
|
+ $2 = -36 ⋅ (990 - 488) + 35 ⋅ 502$
|
||
|
+ #solvein[$2 = - 36 ⋅ 990 + 71 ⋅ 502$]
|
||
|
+ #solvein[$2 = 71 ⋅ 502 - 36 ⋅ 990$]
|
||
|
]
|
||
|
|
||
|
+ Show that if $a ≡ b (mod m)$ and $c ≡ d (mod m)$, where $a$, $b$, $c$, $d$, and $m$, are integers with $m >= 2$, then $a - c ≡ b - d (mod m)$ (10 pts).
|
||
|
|
||
|
#solve[
|
||
|
+ $a ≡ b (mod m) = m | (a - b)$
|
||
|
+ $a = b + m k$ where $k$ is an integer
|
||
|
+ $c ≡ d (mod m) = m | (c - d)$
|
||
|
+ $c = d + m j$ where $j$ is an integer
|
||
|
+ $a - c = (b + m k) - (d + m j)$
|
||
|
+ $a - c = (b - d) + (m k - m s)$
|
||
|
+ $a - c = (b - d) + m(k - s)$
|
||
|
+ $(a - c) - (b - d) = m (k - s)$
|
||
|
+ $(a - c) - (b - d) = m i$, where $i = k - s$ is an integer
|
||
|
+ $m | (a - c) - (b - d)$
|
||
|
+ $∴ a - c ≡ b - d (mod m)$
|
||
|
]
|
||
|
|
||
|
+ Let $a$ and $b$ be positive integers. Then $a b = \g\cd(a, b) ⋅ \l\cm(a,b)$.
|
||
|
#enum(
|
||
|
numbering: "a.",
|
||
|
[
|
||
|
Please prove it and show the intermediate steps (15 pts). [Hint: Use the prime factorizations of $a$ and $b$ and the formulae for $\g\cd(a, b)$ and $\l\cm(a, b)$ in terms of these factorizations. You also can use any other methods.]
|
||
|
#solve[
|
||
|
+ $a = p^(a_1)_(1) ⋅ p^(a_2)_(2) ⋅⋅⋅ p^(a_n)_(n)$, where $p_n$ are prime numbers and $a_n$ are non-negative integers
|
||
|
+ $b = p^(b_1)_(1) ⋅ p^(b_2)_(2) ⋅⋅⋅ p^(b_n)_(n)$, where $p_n$ are prime numbers and $b_n$ are non-negative integers
|
||
|
+ $\g\cd(
|
||
|
a, b
|
||
|
) = p^(min(a_1,b_1))_1 ⋅ p^(min(a_2,b_2))_2 ⋅⋅⋅ p^(min(a_n,b_n))_n$
|
||
|
+ $\l\cm(
|
||
|
a, b
|
||
|
) = p^(max(a_1,b_1))_1 ⋅ p^(max(a_2,b_2))_2 ⋅⋅⋅ p^(max(a_n,b_n))_n$
|
||
|
+ $g\c\d(a,b) ⋅ \l\cm(a, b) = (
|
||
|
p^(min(a_1,b_1))_1 ⋅ p^(min(a_2,b_2))_2 ⋅⋅⋅ p^(min(a_n,b_n))_n
|
||
|
) ⋅ (
|
||
|
p^(max(a_1,b_1))_1 ⋅ p^(max(a_2,b_2))_2 ⋅⋅⋅ p^(max(a_n,b_n))_n
|
||
|
)$
|
||
|
|
||
|
+ $g\c\d(a,b) ⋅ \l\cm(a, b) = (
|
||
|
p^(min(a_1,b_1) + max(a_1,b_1))_1 ⋅ p^(min(a_2,b_2) + max(a_2,b_2))_2 ⋅⋅⋅ p^(min(a_n,b_n) + max(a_n,b_n))_n
|
||
|
)$
|
||
|
+ $min(a_n,b_n) + max(a_n,b_n) = a_n + b_n$
|
||
|
+ $g\c\d(a,b) ⋅ \l\cm(
|
||
|
a,b
|
||
|
) = p^(a_1 + b_1)_1 ⋅ p^(a_2 + b_2)_2 ⋅⋅⋅ p^(a_n + b_n)_n = a b$
|
||
|
+ $∴ a b = g\c\d(a,b) ⋅ \l\cm(a,b)$
|
||
|
#note[If I have to type another `p^(min(a_n,b_n) + max(a_n,b_n))_n`, I _will_ ask for #text(red)[ Ǵ̶̱̝̅̓ȯ̸͙̯͝d̵̛͇͓ͅ'̵̺̑̀͆ͅͅs̶̖̏ ̶̫͔̲͂m̶̱̗̤͒́̏a̵̛̝̳̒n̶̼̱̆ä̷̤ǧ̸̢͜͜e̶̡͂r̵̞̯̺̄].]
|
||
|
]
|
||
|
],
|
||
|
[
|
||
|
Verify that $\g\cd(860, 516)⋅\l\cm(860,516) = 860 * 516$ (5 pts).
|
||
|
#note[
|
||
|
+ $860=2^2 ⋅ 3^0 ⋅ 5^1 ⋅ 43^1$
|
||
|
+ $516=2^2 ⋅ 3^1 ⋅ 5^0 ⋅ 43^1$
|
||
|
#underline[GCD]
|
||
|
+ $\g\cd(
|
||
|
860, 516
|
||
|
) = 2^(min(2,2)) ⋅ 3^(min(0,1)) ⋅ 5^(min(1,0)) ⋅ 43^(min(1,1))$
|
||
|
+ $\g\cd(860, 516) = 2^2 ⋅ 3^0 ⋅ 5^0 ⋅ 43^1$
|
||
|
+ $\g\cd(860, 516) = 4 ⋅ 1 ⋅ 1 ⋅ 43$
|
||
|
+ $\g\cd(860, 516) = 172$
|
||
|
#underline[LCM]
|
||
|
+ $\l\cm(
|
||
|
860, 516
|
||
|
) = 2^(max(2,2)) ⋅ 3^(max(0,1)) ⋅ 5^(max(1,0)) ⋅ 43^(max(1,1))$
|
||
|
+ $\l\cm(860, 516) = 2^2 ⋅ 3^1 ⋅ 5^1 ⋅ 43^1$
|
||
|
+ $\l\cm(860, 516) = 4 ⋅ 3 ⋅ 5 ⋅ 43$
|
||
|
+ $\l\cm(860, 516) = 2580$
|
||
|
#underline[Check if gcd \* lcm = 860 \* 516]
|
||
|
+ $172 * 2580 = 443760$
|
||
|
+ $860 * 516 = 443760$
|
||
|
+ #solvein[$(172 ⋅ 2580 = 443760) = (443760 = 860 ⋅ 516)$]
|
||
|
]
|
||
|
],
|
||
|
)
|