2024-09-21 15:23:33 -05:00

298 lines
8.4 KiB
Typst

#set page(margin: (x: .5in, y: .5in))
#let solvein(solution) = {
let outset = 3pt
h(outset)
box(
outset: outset,
stroke: blue + .3pt,
fill: rgb(0, 149, 255, 15%),
radius: 4pt,
)[#solution]
}
#let solve(content) = [
#align(
center,
block(
inset: 5pt,
stroke: blue + .3pt,
fill: rgb(0, 149, 255, 15%),
radius: 4pt,
)[#align(left)[#content]],
)
]
#let notein(content) = {
let outset = 3pt
h(outset)
box(
outset: outset,
stroke: luma(20%) + .3pt,
fill: luma(95%),
radius: 4pt,
)[#content]
}
#let note(content) = [
#align(
center,
block(
inset: 5pt,
stroke: luma(20%) + .3pt,
fill: luma(95%),
radius: 4pt,
)[#align(left)[#content]],
)
]
#align(center)[
= CS 3333 Mathematical Foundations
Homework 2 (100 points)\
#underline[Price Hiller] *|* #underline[zfp106]
]
#line(length: 100%, stroke: .25pt)
= Submission:
Same as HW1.
= Questions
+ Answer Yes or No (12 pts).
#enum(
numbering: "a.",
[
Is $87 51 (mod 5)$? #solvein[No]
],
[
Is $34 14 (mod 3)$? #solvein[No]
],
[
Is $7 55 (mod 24)$? #solvein[Yes]
],
[
Is $29 41 (mod 12)$? #solvein[Yes]
],
)
+ List 5 integers that are congruent to 6 modulo 19 (10 points).
#solvein[
+ $6$, #notein[$ (6 - 6) mod 19 = 0$]
+ $25$, #notein[$ (25 - 6) mod 19 = 0$]
+ $44$, #notein[$ (44 - 6) mod 19 = 0$]
+ $63$, #notein[$ (63 - 6) mod 19 = 0$]
+ $82$, #notein[$ (82 - 6) mod 19 = 0$]
]
+ Calculate the following problems (18 pts).
#enum(
numbering: "a.",
[
$7+_(11) 34 =$ #solvein[$8$]
#note[
+ $(7 + 34) mod 11$
+ $(41) mod 11$
+ $8$
]
],
[
$5_(13) 19 =$ #solvein[ $4$ ]
#note[
+ $(5 19) mod 13$
+ $(95) mod 13$
+ $4$
]
],
[
$17+_(11) 1 =$ #solvein[$7$]
#note[
+ $(17 + 1) mod 11$
+ $(18) mod 11$
+ $7$
]
],
[
$47+_(13) 0 =$ #solvein[$8$]
#note[
+ $(47 + 0) mod 13$
+ $(47) mod 13$
+ $8$
]
],
[
$55_(11) 1 =$ #solvein[$0$]
#note[
+ $(55 1) mod 11$
+ $(55) mod 11$
+ $0$
]
],
[
$55_(11) 0 =$ #solvein[$0$]
#note[
+ $(55 0) mod 11$
+ $(0) mod 11$
+ $0$
]
],
)
+ Find all positive primes $<= 50$ (You can just list the positive prime numbers directly.) (10 points).
#align(center)[
#solvein[
All primes $<= 50$
#table(
columns: (auto, auto, auto, auto, auto),
[2], [3], [5], [7], [11],
[13], [17], [19], [23], [29],
[31], [37], [41], [43], [47],
)]
#note[
Some Rust code to generate those primes :)
```rust
fn main() {
let is_prime = |num: usize| -> bool { num > 1 && !((2..num).any(|n| num % n == 0)) };
let primes: Vec<_> = (0..50).filter(|x| is_prime(*x)).collect();
println!(
"Prime numbers: {:?}\nNumber of prime numbers found: {}",
primes,
primes.len()
);
}
```
]
]
+ Find all positive integers less than $50$ that are relatively prime to $50$ (showing the $\g\cd$ is optional. You can list all the numbers.) (10 pts).
#align(center)[
#solvein[
All relative primes $< 50$
#table(
columns: (auto, auto, auto, auto, auto),
[2], [3], [5], [7], [ 11],
[13], [17], [19], [23], [29],
[31], [37], [41], [43], [47],
)]
#note[
Some Rust code to generate those co-primes :)
```rust
fn gcd(a: &usize, b: &usize) -> usize {
let mut a = *a; // Deref to avoid modifying the passed value
let mut b = *b; // Deref to avoid modifying the passed value
assert!(a != 0 && b != 0);
while b != 0 {
(a, b) = (b, a % b)
}
a
}
fn main() {
let relative_primes: Vec<_> = (1..51).filter(|x| gcd(x, &50) == 1).collect();
println!(
"Relatively prime numbers: {:?}\nNumber of relative prime numbers found: {}",
relative_primes,
relative_primes.len()
);
}
```
]
]
+ Express $\g\cd(990, 502) = 2$ as a linear combination of $990$ and $502$ by working backwards through the steps of the Euclidean algorithm (10pts). [Hint: refer to Example 17 in the textbook Section 4.3.8]
#note[
Working it fowards:
+ $990 = 1 502 + 488$
+ $502 = 1 488 + 14$
+ $488 = 34 14 + 12$
+ $14 = 1 12 + 2$
+ $12 = 6 2 + 0$
+ $\g\cd(990, 502) = 2$, from step $4$
Now backwards:
+ $2 = 14 - 1 12$
+ $2 = 14 - 1 (488 - 34 14)$
+ $2 = -1 488 + 35 14$
+ $2 = -1 488 + 35 (502 - 488)$
+ $2 = -36 488 + 35 502$
+ $2 = -36 (990 - 488) + 35 502$
+ #solvein[$2 = - 36 990 + 71 502$]
+ #solvein[$2 = 71 502 - 36 990$]
]
+ Show that if $a b (mod m)$ and $c d (mod m)$, where $a$, $b$, $c$, $d$, and $m$, are integers with $m >= 2$, then $a - c b - d (mod m)$ (10 pts).
#solve[
+ $a b (mod m) = m | (a - b)$
+ $a = b + m k$ where $k$ is an integer
+ $c d (mod m) = m | (c - d)$
+ $c = d + m j$ where $j$ is an integer
+ $a - c = (b + m k) - (d + m j)$
+ $a - c = (b - d) + (m k - m s)$
+ $a - c = (b - d) + m(k - s)$
+ $(a - c) - (b - d) = m (k - s)$
+ $(a - c) - (b - d) = m i$, where $i = k - s$ is an integer
+ $m | (a - c) - (b - d)$
+ $ a - c b - d (mod m)$
]
+ Let $a$ and $b$ be positive integers. Then $a b = \g\cd(a, b) \l\cm(a,b)$.
#enum(
numbering: "a.",
[
Please prove it and show the intermediate steps (15 pts). [Hint: Use the prime factorizations of $a$ and $b$ and the formulae for $\g\cd(a, b)$ and $\l\cm(a, b)$ in terms of these factorizations. You also can use any other methods.]
#solve[
+ $a = p^(a_1)_(1) p^(a_2)_(2) p^(a_n)_(n)$, where $p_n$ are prime numbers and $a_n$ are non-negative integers
+ $b = p^(b_1)_(1) p^(b_2)_(2) p^(b_n)_(n)$, where $p_n$ are prime numbers and $b_n$ are non-negative integers
+ $\g\cd(
a, b
) = p^(min(a_1,b_1))_1 p^(min(a_2,b_2))_2 p^(min(a_n,b_n))_n$
+ $\l\cm(
a, b
) = p^(max(a_1,b_1))_1 p^(max(a_2,b_2))_2 p^(max(a_n,b_n))_n$
+ $g\c\d(a,b) \l\cm(a, b) = (
p^(min(a_1,b_1))_1 p^(min(a_2,b_2))_2 p^(min(a_n,b_n))_n
) (
p^(max(a_1,b_1))_1 p^(max(a_2,b_2))_2 p^(max(a_n,b_n))_n
)$
+ $g\c\d(a,b) \l\cm(a, b) = (
p^(min(a_1,b_1) + max(a_1,b_1))_1 p^(min(a_2,b_2) + max(a_2,b_2))_2 p^(min(a_n,b_n) + max(a_n,b_n))_n
)$
+ $min(a_n,b_n) + max(a_n,b_n) = a_n + b_n$
+ $g\c\d(a,b) \l\cm(
a,b
) = p^(a_1 + b_1)_1 p^(a_2 + b_2)_2 p^(a_n + b_n)_n = a b$
+ $ a b = g\c\d(a,b) \l\cm(a,b)$
#note[If I have to type another `p^(min(a_n,b_n) + max(a_n,b_n))_n`, I _will_ ask for #text(red)[ Ǵ̶̱̝̅̓ȯ̸͙̯͝d̵̛͇͓ͅ'̵̺̑̀͆ͅͅs̶̖̏ ̶̫͔̲͂m̶̱̗̤͒́̏a̵̛̝̳̒n̶̼̱̆ä̷̤ǧ̸̢͜͜e̶̡͂r̵̞̯̺̄].]
]
],
[
Verify that $\g\cd(860, 516)\l\cm(860,516) = 860 * 516$ (5 pts).
#note[
+ $860=2^2 3^0 5^1 43^1$
+ $516=2^2 3^1 5^0 43^1$
#underline[GCD]
+ $\g\cd(
860, 516
) = 2^(min(2,2)) 3^(min(0,1)) 5^(min(1,0)) 43^(min(1,1))$
+ $\g\cd(860, 516) = 2^2 3^0 5^0 43^1$
+ $\g\cd(860, 516) = 4 1 1 43$
+ $\g\cd(860, 516) = 172$
#underline[LCM]
+ $\l\cm(
860, 516
) = 2^(max(2,2)) 3^(max(0,1)) 5^(max(1,0)) 43^(max(1,1))$
+ $\l\cm(860, 516) = 2^2 3^1 5^1 43^1$
+ $\l\cm(860, 516) = 4 3 5 43$
+ $\l\cm(860, 516) = 2580$
#underline[Check if gcd \* lcm = 860 \* 516]
+ $172 * 2580 = 443760$
+ $860 * 516 = 443760$
+ #solvein[$(172 2580 = 443760) = (443760 = 860 516)$]
]
],
)